framatome

Steam Cycle HTGR

Farshid Shahrokhi

February 2, 2022

Panel Discussions

NASE&M Committee on Laying the Foundation for New and Advanced Nuclear Reactors in the United States

Overview

Framatome HTGR Design Experience

• 1960s, 70s, and 80s

Developing a Gen IV Future

- Framatome GmbH Pebble Bed HTGRs
 - AVR 46 MWth test reactor, THTR 750 MWth cogeneration reactor, HTR-Module 200 MWth
- 1990s and early 2000s
 - GT-MHR 600 MWth prismatic core, Brayton cycle. Collaboration with Russian Federation and General Atomics
- Mid to late 2000s
 - **ANTARES** Project 600 MWth prismatic core, Indirect cycle with heat recovery steam generator
 - US DOE NGNP project Modified ANTARES design
- Late 2000s to present (North America)
 - Steam Cycle HTGR 4x625 MWth, prismatic core cogeneration of process steam and electricity
 - **Four scaled variances** of the reference plant (All use the same fuel and the same fuel block.)
 - 315 MWth single SG
 - 180 MWth EU steam only
 - 54 MWth remote site
- framatome 7 MWth mobile

High-Temperature Gas Reactor

Steam Cycle HTGR (SC-HTGR)

Framatome Inc. Reference HTGR

- Designed to serve industrial energy market

Power and process heat/steam

- Key Features

Scalable design from 4-module 2500-MWth plant to single-module 7-MWth micro mobile plant

Flexible operation for load following/load switching

Passive decay heat removal

Inherent and walk-away safety

TRISO coated particle fuel

High technology readiness levels

Conventional steam cycle

No new material or basic R&D needs

- Design Status Conceptual
- Deployment Schedule ≤10 years (final design, license, construct)

3

4 x 625 MWth SC-HTGR

Reactor outlet temperature	750°C
Reactor inlet temperature	325°C
Primary coolant pressure	6 MPa
Main circulator power	4 MWe (each)
Main steam temperature	566°C
Main steam pressure	16.7 MPa

Very strong safety case for HTGR

- ✓ Intrinsic safety, fuel robustness
- Resistance to natural disasters, human error/equipment failure
- ✓ Following DBAs:
 - ✓ No explosive gases produced
 - ✓ No need for evacuation
 - ✓ Repair and return to power operation

High-Temperature Gas Reactor

framatome

SC-HTGR Used Fuel Path

SC-HTGR Fuel

- UCO Kernel, TRISO coated particles, Enrichment 14.5% ²³⁵U,
- Graphite fuel blocks 1020 blocks
- Refueling Interval 18 to 24 months, ½ core replacement
- Refueling time 21 days breaker to breaker
- Fuel Qualification

Step 1 – Generic [Topical Report EPRI-AR-1(NP), SER expected June 2020] Step 2 – Design specific – DOE AGR irradiation data and design specific accident scenarios

- Burnup qualified up to 19% FIMA, also exploring deep-burn option (60%FIMA)
- Used fuel disposition path-
 - Once through fuel block or fuel compact long term retrievable or permanent storage
 - Reprocessing

framatome

Demonstration

HTGR Single Reactor Module Design Versatile Solution for Many Applications

© Framatome - All rights reserved

6

framatome

