

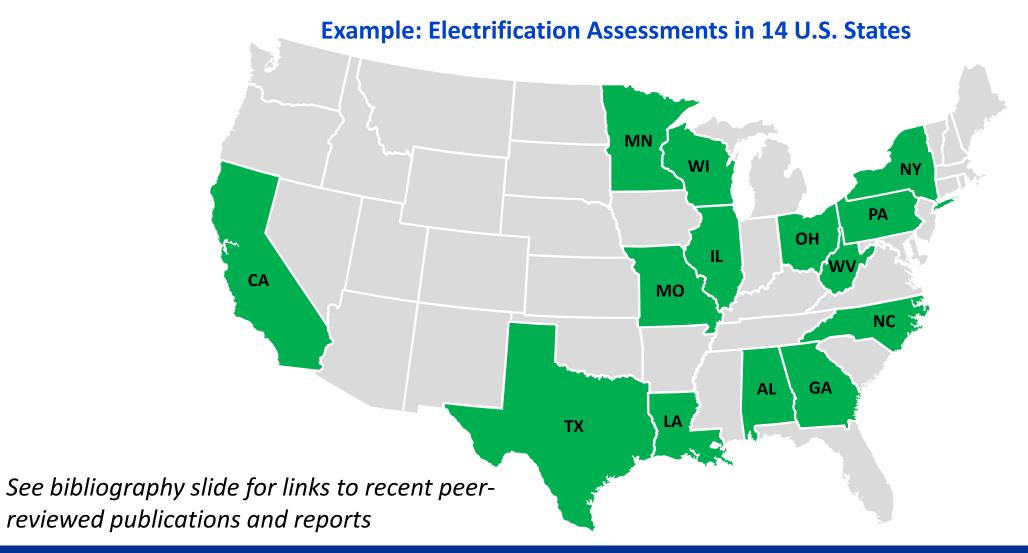
Models for Planning the Future of Electric Power

Insights and Perspectives from EPRI's REGEN Model

John Bistline, Ph.D.

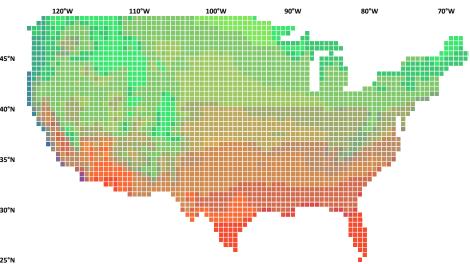
Energy Systems and Climate Analysis

February 3, 2020 National Academies Workshop – Irvine, CA



Policy Analysis Technology Insights Energy Use Trends

- A framework for understanding drivers of change in the electric sector and energy system
- Industry-leading representation of end-use load changes, variable renewables, and energy storage
- Supported by EPRI engineering expertise and technology projections


How Is REGEN Used? Policy and Technology Analyses

Other recent applications include high renewables, CO₂ targets, and proposed state/federal policies

REGEN Strength: Detailed End-Use Modeling

- Climate zones
- Building types
- Household characteristics
- Industrial mix
- End-use technology detail

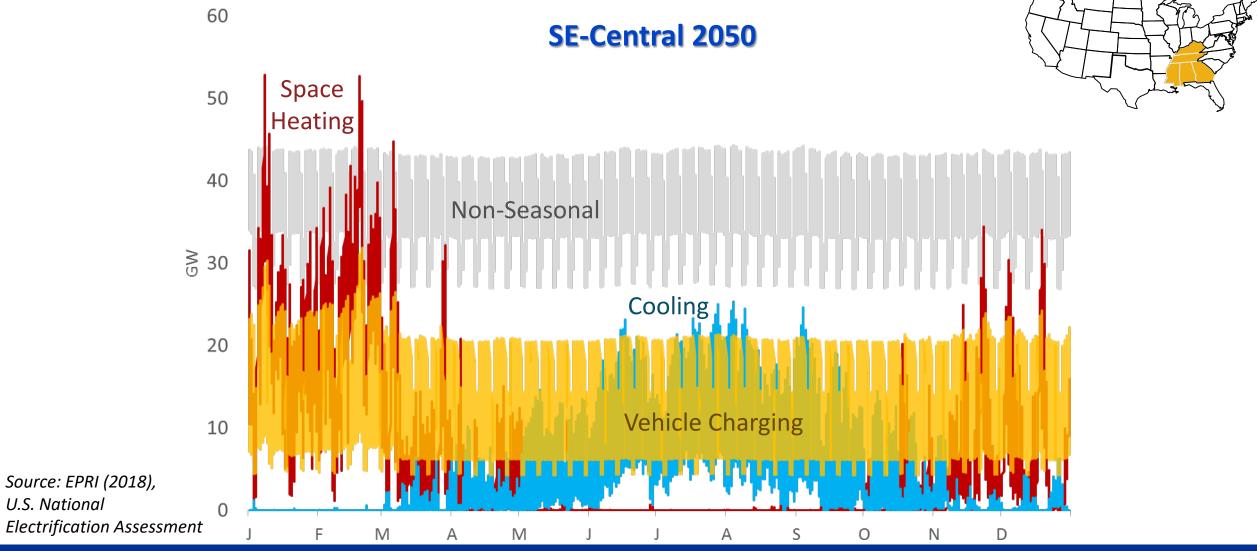
www.epri.com

Synchronized
Hourly Load,
Renewables, & Prices

Model Outputs:

- Generation Capacity
- Wholesale Prices
- End-Use Mix
- Emissions, AirQuality, and Water
- Demand Profiles

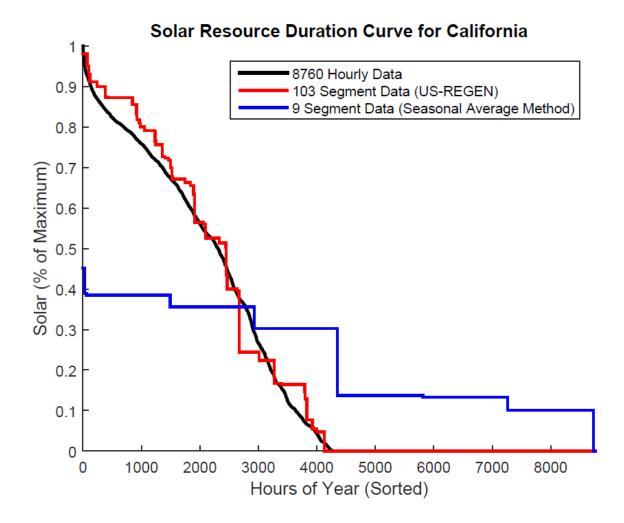
Electric Sector



- Investment and dispatch
- Transmission
- Renewable integration
- Energy and capacity requirements
- State-level policies and constraints

EPRI's state-of-the-art modeling system synchronizes energy end-use and electric sector scenarios

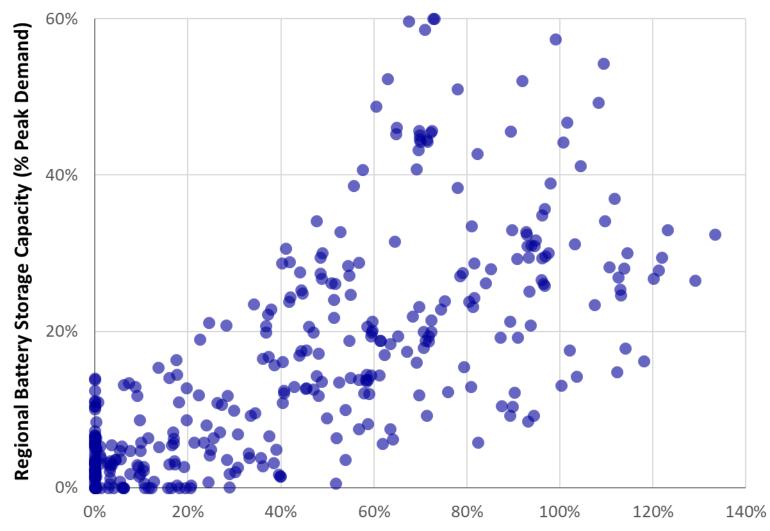
REGEN Strength: Detailed End-Use Modeling



REGEN tracks how hourly sectoral load shapes change over time from electrification and efficiency

www.epri.com

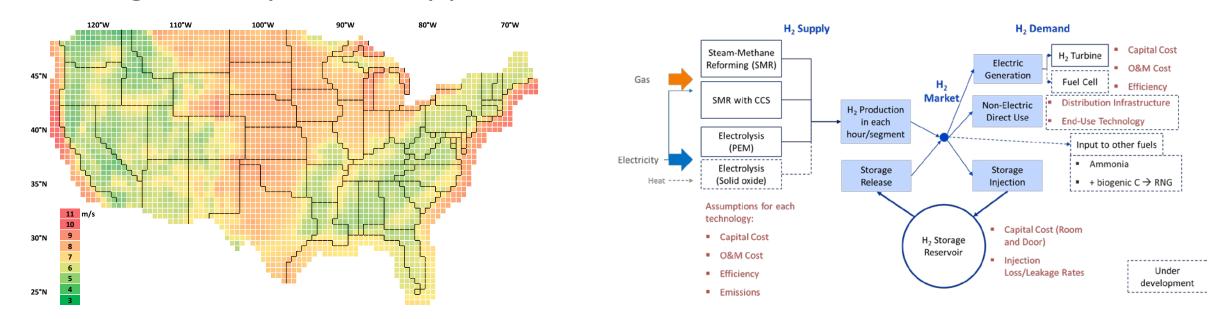
REGEN Strength: Representation of Variable Renewables


- US-REGEN employs an innovative "representative hour" selection algorithm to capture hourly wind, load, and solar shapes
- Captures correlations in a longer time horizon model better than other approaches (e.g., Seasonal Average Method)

Source: Blanford, et al. (2018), "Simulating Annual Variation in Load, Wind, and Solar by Representative Hour Selection" (The Energy Journal)

Representing spatial and temporal variability are important for assessing system-dependent value

REGEN Strength: Representation of Energy Storage


- Hourly resolution and chronology are important for capturing energy storage value
- Use 8,760 hours with single year investment and dispatch
- Storage valuation varies by region and assumptions about future technologies, markets, and policies (figure shows sensitivities on renewable costs, gas prices, CO₂ policy)

Regional Wind and Solar Penetration (% Demand)

Source: Bistline and Young (2019), "Economic Drivers of Wind and Solar Penetration in the U.S." (Environmental Research Letters)

REGEN Future Development Priorities

- 1. Increasing spatial and temporal granularity for utility-level analysis
- 2. Linking to reliability and production cost models
- 3. Adding low-carbon fuel pathways to the end-use model
- 4. Using decomposition approaches to solve more detailed models

Average wind speed at 100m (1980–2015) based on NASA's MERRA2 dataset

Updated hydrogen module in REGEN

Improvements are aimed to help stakeholders understand evolving challenges facing the electric sector

Together...Shaping the Future of Electricity

John Bistline

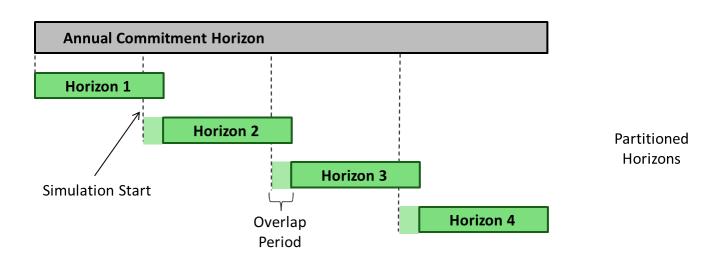
+1-650-855-8517

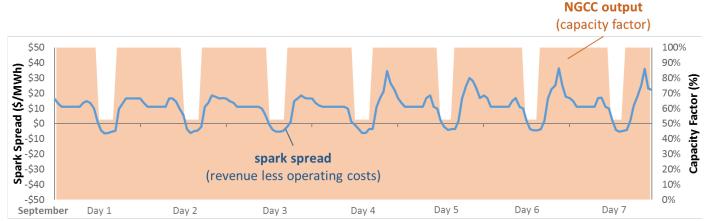
jbistline@epri.com

Bibliography

- Bistline and Young (2019), Economic Drivers of Wind and Solar Penetration in the U.S.,
 Environmental Research Letters (link)
- Bistline, Santen, Young (2019), The Economic Geography of Variable Renewable Energy and Impacts of Trade Formulations for Renewable Mandates, Renewable and Sustainable Energy Reviews (link)
- Blanford, Merrick, Bistline, Young (2018), Simulating Annual Variation in Load, Wind, and Solar by Representative Hour Selection, *The Energy Journal* (<u>link</u>)
- Cole, et al. (2017), Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective, NREL/TP-6A20-70528 (link)
- EPRI (2018), U.S. National Electrification Assessment, EPRI Report 3002013582 (<u>link</u>)
- Santen, et al. (2017), Systems Analysis in Electric Power Sector Modeling: A Review of the Recent Literature and Capabilities of Selected Capacity Planning Tools, EPRI Report 3002011102 (link)
- Young and Bistline (2018), The Costs and Value of Renewable Portfolio Standards in Meeting Decarbonization Goals, Energy Economics (<u>link</u>)
- Young, et al. (2018), US-REGEN Model Documentation, EPRI Report 3002010956 (link)

For more information, see our website at https://eea.epri.com/




Multiple "Flavors" of REGEN to Address Specific Questions

_		<u> </u>		
	Integrated	Electric Only		
	Dynamic	Dynamic	Static	Unit Commitment
Optimization Horizon	Multi-decadal (35 years)	Multi-decadal (35 years)	Annual	Annual
Temporal Granularity	~100 segments per year	~100 segments per year	8,760 hours	8,760 hours
Capacity Mix	Endogenous	Endogenous	Endogenous	Exogenous (from dynamic model run)
Unit Aggregation	100+ capacity blocks per region (dispatched together)	100+ capacity blocks per region (dispatched together)	100+ capacity blocks per region (dispatched together)	Individual units
Storage	N/A	N/A	Endogenous	Exogenous
Geographical Detail	User-specified regions, less than 20	User-specified regions	All user-specified regions	All user-specified regions
Dispatch Constraints	Load balancing	Load balancing	Load balancing	Balancing, min. load limits, ramp rates, start costs, etc.
Optimization Type	Linear program	Linear program	Linear program	Mixed-integer program
Sectors	Entire economy	Electric Sector	Electric sector	Electric sector
Energy Demand	Endogenous; detailed end- use model	Fixed, may use supply curves for some inputs	Fixed	Fixed
Fuel Prices	Fixed	Fixed, may use supply curves for some inputs	Fixed	Fixed

REGEN Features: Soft-Linked to an In-House Unit Commitment Model

- Provides detailed annual snapshots of system operations with unit-level costs and constraints using capacity mixes from the dynamic model
- Advantages: Hourly temporal resolution and chronology more accurately represent the covariance of resources, trade, storage, and operational constraints
- Disadvantages: No subhourly impacts, intra-region transmission constraints, or uncertainty