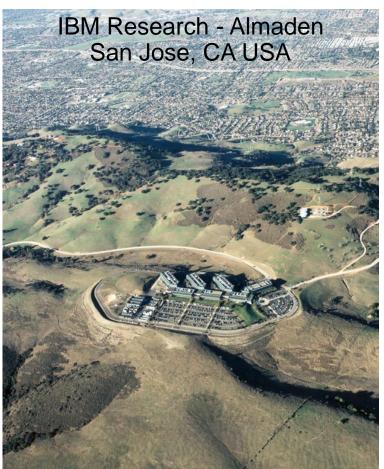
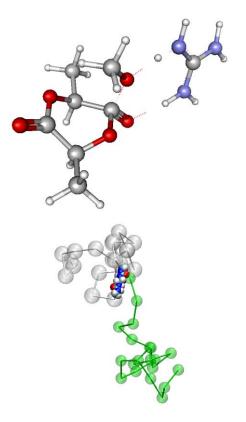


Al and Machine Learning for Pharmaceutical & Materials Discovery





IBM's commitment to Data Responsibility

- 1. Data Ownership and Privacy -- clients own their data
- 2. Data Flows and Access clients determine where data is stored & therefore legal jurisdiction of data

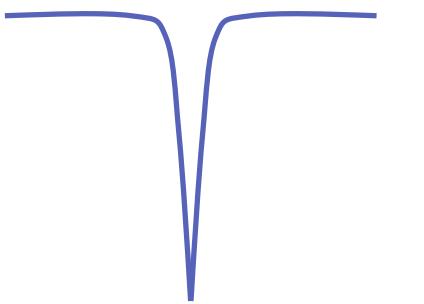
- 3. Data Security and Trust full-strength encryption without backdoors; public-private cybersecurity partnerships
- 4. Al and Data algorithms need to be transparent and explainable; bias must be understood & controlled

https://www.weforum.org/agenda/2018/01/new-era-data-responsibility

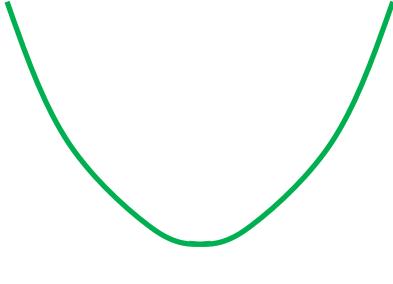
https://www.ibm.com/blogs/policy/dataresponsibility-at-ibm/

What sport are you playing?

Response surfaces/objective functions



- Small part of problem space is valuable
- No useful gradients
- Hard search problem
- Ex: drug discovery

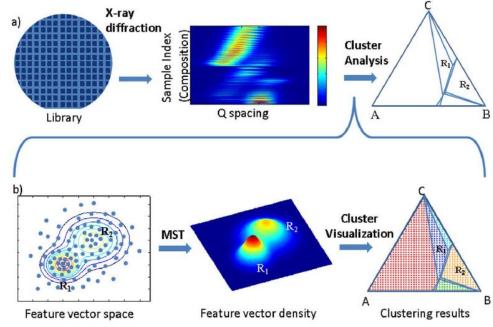


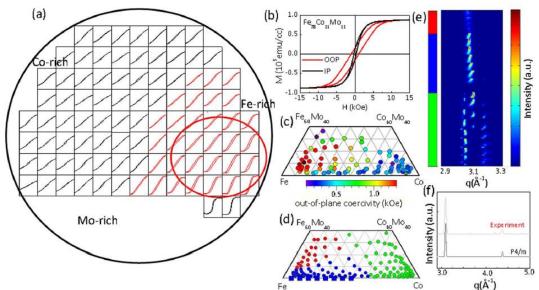
- "Close" counts
- Useful gradients
- Optimization problem
- Ex: alloy design

ML for experimental interpretation of X-ray materials data

Kusne, et al Scientific Reports 4, 6367 15 September 2014

doi: 10.1038/srep06367

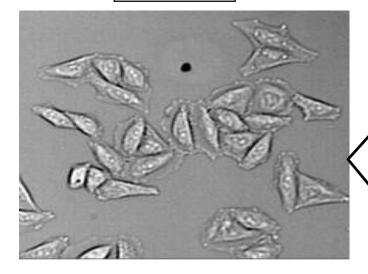




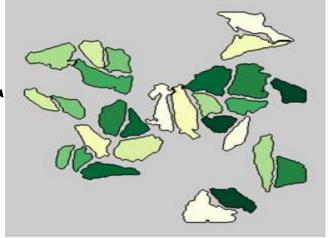
DNN for cell image segmentation with active learning

Chowdhury, Biswas, Bianco, bioRXiv preprint; doi 10.1101/211060

Original

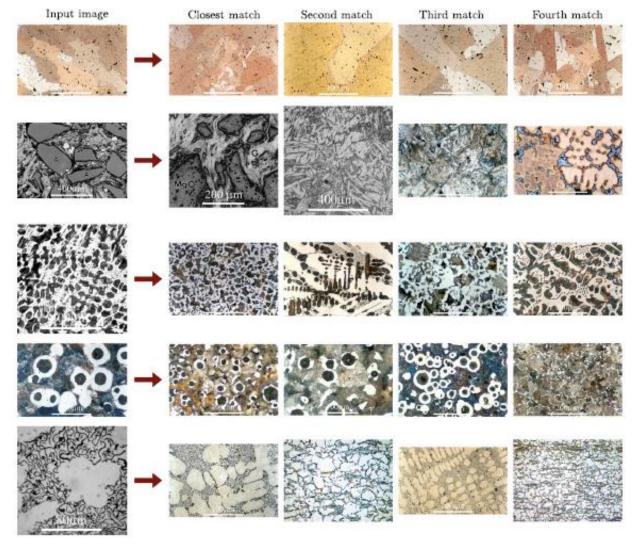


Images needed for training = 1/6 of best method available



Active Learning

Computer Vision for metallurgical microstructure

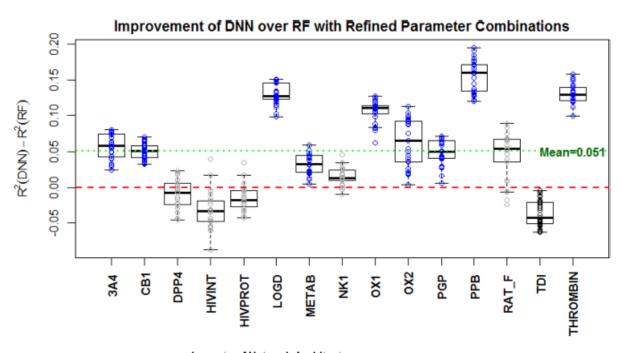


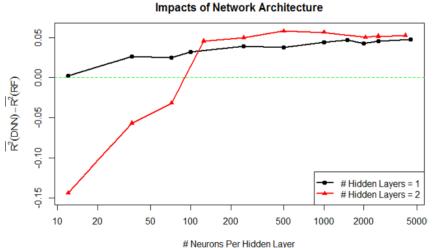
DeCost, Holm, Computational Materials Science 110 (2015) 126-133; dx.doi.org/10.1016/j.commatsci.2015.08.011

DNN for quantitative structure-activity relationships (QSAR)

Ma, Sheridan, et al J. Chem. Inf. Model. 2015 55, 2, 263-274

doi 10.1021/ci500747n





Learning models of materials properties

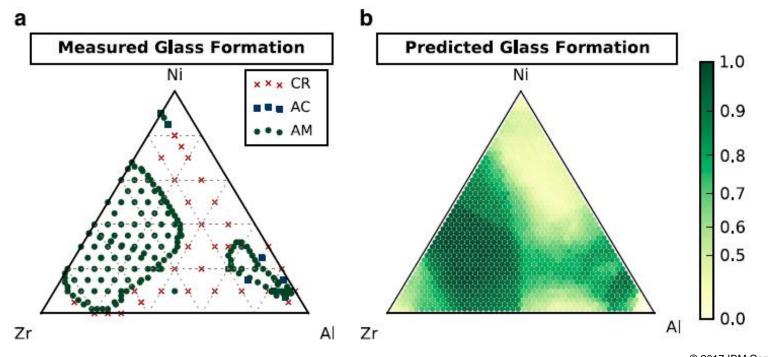
Ward, et al, npj Computational Materials 2016 2, 16028;

doi:10,1038/npjcompu mats.2016.28

Table 1. Comparison of the ability of several machine learning algorithms to predict properties of materials from the OQMD						
	Machine learning algorithm					
	Linear regression	Reduced-error pruning tree (REPTree)	Rotation forest ⁴⁶ +REPTree	Random subspace ⁵⁵ +REPTree		
Property						
Volume (Å ³ per atom)	1.22	0.816	0.593	0.563		
Formation energy (eV per atom)	0.259	0.126	0.0973	0.0882		
Band gap energy (eV)	0.202	0.0701	0.0643	0.0645		

Abbreviations: DFT, density functional theory; OQMD, Open Quantum Materials Database.

Data represents the mean absolute error in a 10-fold cross-validation test of a single model trained on the properties predicted using DFT of 228,676 crystalline compounds.

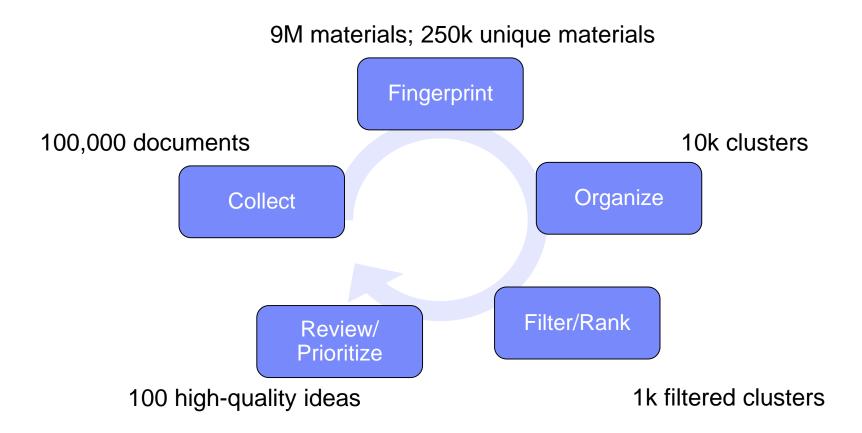


Convolutional DNNs for drug-target binding prediction

Wallach, Dzamba, Heifets, arXiv preprint arXiv:1510.0285 5, 2015

Comparator	# of DUDE targets tested	Comparator mean AUC	AtomNet mean AUC
Surflex-Dock	10	0.76	0.93
DOCK3.7	full set	0.70	0.895
DOCK6.7	5	0.72	0.85

Sample Informatics Cycle



Al/Machine learning in Discovery applications

Improve/speed experiment

Manage complex data

Learn predictive models

Encode human expertise

