Mars' Crustal Evolution from Remote Sensing: Current Understanding and Outstanding Questions

Deanne Rogers SUNY Stony Brook

With thanks to: Mariek Schmidt Brock University, Canada (see also LPSC 2019 Abs. 2419)

GAMMA RAY AND INFRARED GLOBAL DATA SETS

Mars Global Surveyor (MGS) 1996-2006 Thermal Emission Spectrometer (TES)

Mars Odyssey 2001-present Thermal Emission Imaging System (THEMIS) Gamma Ray Spectrometer (GRS)

Mars Express 2003-present Visible and Infrared Mineralogical Mapping Spectrometer (OMEGA)

Mars Reconnaissance Orbiter (MRO) 2006-present Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)

> Tharsis Face of Mars Mars Global Surveyor (MGS) Mars Orbital Camera (MOC) NASA/MSSS

EVOLVING INTERIOR – NOACHIAN TO HESPERIAN

4000

Pre-Noachian

4500

Differences in mineralogy and chemical abundances between Noachian and Hesperian terrains

Decreased abundance ratio LCP:(LCP+HCP)

Consistent with lower degrees of partial melting caused by a cooling mantle and thickening lithosphere

Decreased K (and Th) abundance

- This would suggest *increased partial melting in the Hesperian* (not consistent with LCP:HCP trends)
 - Noachian crust built by a more complex set of \bullet processes than the Hesperian, with varying degrees of magmatic differentiation to produce higher K

Better understanding of the precise mineralogy, prevalence of alkaline volcanics would help constrain Noachian crust-building processes.

Baratoux et al. (2013); Rogers and Hamilton (2014) Mustard et al. (2005); Rogers and Christensen (2007); Poulet et al. (2009); Ody et al., (2012); Riu et al., (2019)

IN-SITU OBS. AND METEORITES PROVIDE EVIDENCE FOR ALKALINE VOLCANISM IN THE NOACHIAN

- *In-situ*: Subalkaline to alkaline basalts to andesites at Columbia Hills and Gale crater
- Ancient meteorites NWA 7034: Noachian regolith breccia with clasts:
 - Basalt (tholeiitic and alkali)
 - Basaltic andesite
 - Trachydacite
 - Fe-Ti-P-rich lithology

Meyer, (2009) and references therein; Santos et al. (2015); Brückner, J et al. (2003); McSween et al. (2006); Ming, D.W. et al. (2008); Zipfel, J. et al. (2011); Schmidt et al. (2014); Schmidt et al. (2017)

4.4 Ga Zircon in alkali-rich basaltic clast in Black Beauty >>Confirms ancient alkali magmatism

Santos et al., 2015; McCubbin et al., 2016

EVOLVING INTERIOR – HESPERIAN TO AMAZONIAN

Differences in elemental abundances between Hesperian and Amazonian volcanic provinces

Pre-Noachian	Noachian	Hesperian 🗕				Amazonian			
500	4000	3500	3000	2500	2000	1500	1000	500	01

Pressure (GPa)

• Lower SiO₂, higher Th in Amazonian

 \rightarrow Continued mantle cooling, thickening 2.5r lithosphere and smaller melt fractions. Į2 Σ 2.0 S Arsia Mons Olympus Mons Alba Pate Ascraeu's Mons 🛆 Elysium Mons ,500 1.5 Syrtis Major Tvrrhena Pater Gusev Hesperia Planum Solis Planum Sinai Planum 0 10 20 30 Degree of partial melting (%)

Baratoux et al., 2011

EVOLVED MAGMAS

Al-rich Jake M class

Porphyritic feldspar clasts in conglomerate

Rare dacitic, trachydacitic, trachyandesitic lithologies

• Evidence for fractional crystallization of basaltic magmas

Rare quartz detections in NW Syrtis Major are likely diagenetic in origin

Smith and Bandfield (2012)

RARE FELDSPAR-RICH LITHOLOGIES

Feldspar-rich (>~60 vol%) lithologies observed from orbit are not well understood.

- Full areal extent/occurrences also are not well-constrained
- Variable contexts

Proposed origin(s):

- Anorthosites (Carter & Poulet, 2013)
- Felsic volcanics / intrusions

(Wray et al., 2013; Irwin et al., 2018)

- Fractionally crystallized basaltic magmas (Rogers & Nekvasil, 2015).
- Alkaline igneous (Farrand et al., 2021)
- Arkosic sandstones (Irwin et al., 2018)

OLIVINE-BEARING LITHOLOGIES

- Occur in a variety of contexts and terrains
- Noachian and Hesperian outcrops
- Some associated with clastic / friable units

Christensen *et al.,* 2003

Edwards et al. (2008

Plains / draping units

Chasma walls/floors

Hamilton and Christensen (2005)

EVIDENCE FOR EXPLOSIVE VOLCANISM IN THE NOACHIAN

Michalski et al. 2010

diagenetically altered pyroclastics Some rimless depressions interpreted as *possible* "supervolcano" calderas

20 km

Michalski & Bleacher 2013

SUMMARY

- The early Mars magma ocean and associated planetary differentiation led to the formation of discrete, depleted and enriched mantle reservoirs.
- With time, the planet continued to cool and the lithosphere thickened, causing lower degrees of partial melting and melt generation at greater depths in the Mars mantle.
- While the early Mars crust was lithologically diverse, the Mars crust is generally basaltic.

OUTSTANDING QUESTIONS	TIR img. spec (Hig.	NIR img. spec h-res)	Radar Img.	Hi- res img.	Gra vity	ln- situ	Why it matters. Implications for:
 What was the extent and timing of explosive volcanism? Explosive – effusive transition LN/EH? Which near-surface units are pyroclastic? 	Х	Х	Х	XX	Х	ХХ	 History of volatile inputs to the atmosphere Mantle composition and interior evolution Interpreting the aqueous history and habitability of the crust (e.g. material reactivity, mechanical properties/ erodibility, hydraulic properties, etc).
 2. What is the structure of Noachian crust; what processes formed this crust? Is there a deep feldspathic component in the Martian crust? (Baratoux 2014) 	Х	Х		Х	ХХ		 Interior evolution Early crust development / possibility of crustal recycling
3. What was the spatial extent and timing of alkalic volcanism?	XX	Х					 Mantle composition and interior evolution History of volatile inputs to the atmosphere
4. What are the feldspar-bearing lithologies?	ХХ	х		Х		ХХ	 Mantle composition; fractionation processes Sedimentary processes?
5. What are the bulk compositions of <u>lowland</u> igneous materials and how do they differ from highland Hesperian volcanics?	ХХ	ХХ	?		Х	XX	 Mantle composition and interior evolution History of volatile inputs to the atmosphere
6. What are the bulk compositions of Tharsis/Elysium volcanics?	?	?			Х	?	 Mantle composition and interior evolution History of volatile inputs to the atmosphere
7. Is Mars still magmatically active? Where?	Contin	nued moni	toring wi	th imagi	ng		 Possibility of extant life / habitability Interior evolution