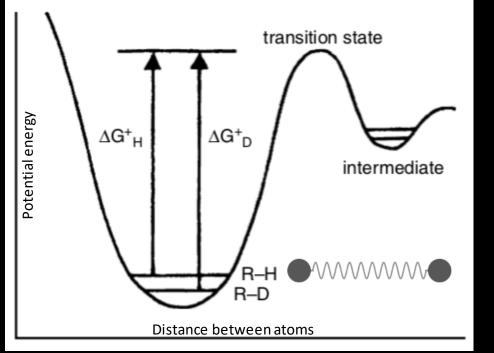
CHONS Isotopes in the Search for Extraterrestrial Life

Kelly E. Miller¹ and the CHONS Isotopes White Paper Team


¹Southwest Research Institute

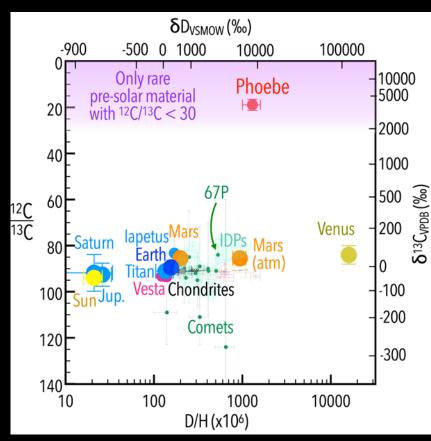
Outline

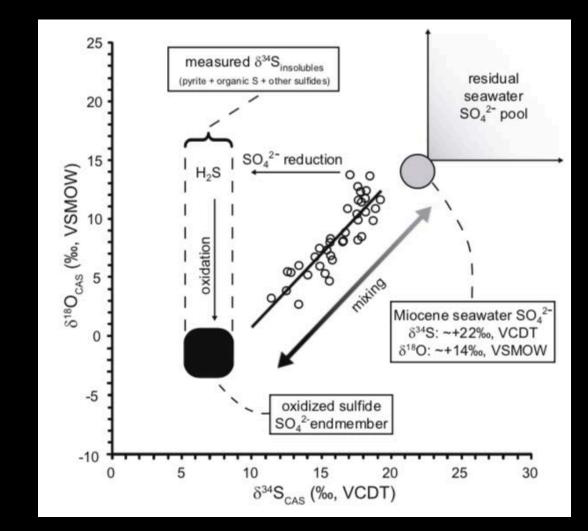
- Background
- Case study: Sulfate-reducing microbes
- Case study: Identifying abiotic methane on Earth
- Up and coming measurements
- Analytical tools and techniques
- Recommendations for the next decade

Background

$$\delta^{13}\mathrm{C} = \left(rac{\left(rac{\mathrm{^{13}C}}{\mathrm{^{12}C}}
ight)_{\mathrm{sample}}}{\left(rac{\mathrm{^{13}C}}{\mathrm{^{12}C}}
ight)_{\mathrm{standard}}} - 1
ight) imes 1000$$
 %.

- Light isotopes form bonds that are less stable
 - More reactive, easier to break bonds
- Basis of the kinetic isotope effect




Image: adapted from Neveu+, 2020

- Isotopic deviations within the solar system are small but measurable
 - Use of delta notation

Image: Khalfina+Vlasov, 2011; Chemistry LibreTexts

Isotopic records of a microbial ecosystem

- Theiling+Coleman, 2019
- Sulfate reducing microbes preferentially consume ${}^{32}SO_4{}^{2-}$, yielding enriched $\delta^{34}S_{sulfate}$ and depleted $\delta^{34}S_{H2S}$
- Sulfide oxidizing bacteria preferentially produce ³²S[¹⁶O]₄²⁻
- Data points reflect mixing between different redox environments

See also: Reeves+Fiebig, 2020

Evolution in Identification of Terrestrial Abiotic Hydrocarbons

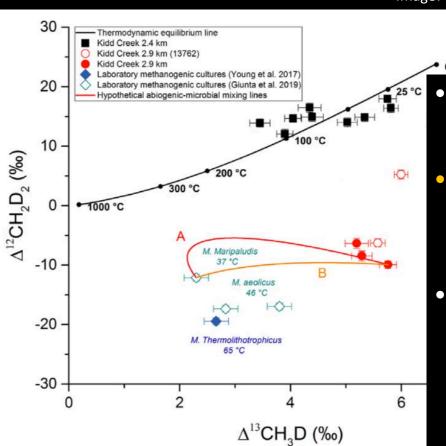


Image: Warr+, 2021

• Empirical definition of abiotic δ^{13} C and δ D isotopic fields for terrestrial methane (Milkov+Etiope, 2018)

(%)

δ13C-CH₄ (

- Isotopic trends in carbon chain length match between abiotic Murchison meteorite and Kidd Creek – a terrestrial abiotic reservoir? (Sherwood Lollar+, 2002)
- "Clumped isotopes" have more than one rare isotope (e.g. ¹³CH₃D and CH₂D₂) and are commonly used for thermometry (e.g. Guo+Eiler, 2007). Clumped methane at Kidd Creek suggests mixing of biotic and abiotic sources (Warr+, 2021).

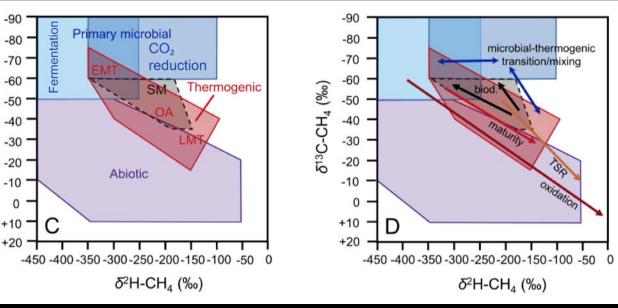


Image: Milkov+Etiope, 2018

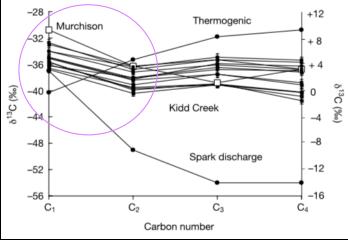
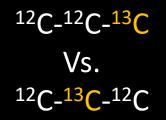



Image: Sherwood Lollar+, 2002

Position-Specific Isotopic Ratios

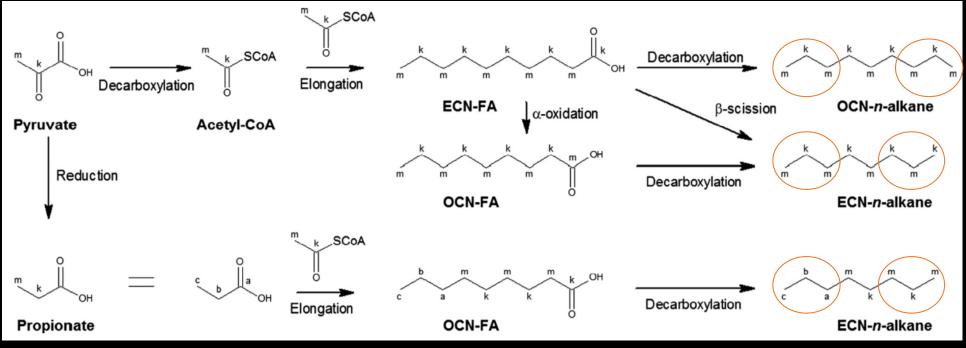


Image: Gilbert+, 2013

Analytical Tools and Techniques

Spatial

Heterodyne

Spectrometer

Example of

application:

of Martian

atmospheric

constituents

from lander

measurement

Direct Sampling

- Requires ingestion of sample - destructive, places limitation on location
- Tend to have higher specificity, lower uncertainties
- Examples of applications: isotopic ratios of carbonates or organics from Martian sediments
- Mass spectrometry
- Tunable laser spectroscopy
- Millimeter spectroscopy

Remote Sensing

- Greater flexibility in spatial relationship to target
- Non-destructive
- Typically greater uncertainties
- Examples of applications: isotopic ratios of Martian atmospheric constituents from orbiter
- Millimeter/submillime ter limb sounding
- UV spectroscopy

Ground Based

Laboratory analytical

techniques:

- Requires sample return
- Easier to implement
- sample work up and analysis
- Greater precision and accuracy

ic Earth based

 Example of application: Time-sensitive campaigns for observation of Martian atmospheric constituents

Summary

- CHONS isotopic analyses are key tools for biogeochemistry and the search for biosignatures
 - Demonstrated value in terrestrial applications
 - Geochemical context is critical to interpretation
- Up and coming techniques like clumped isotopes and positionspecific isotopic analyses will continue to advance the gold standard
- Several strong analytical techniques mature and/or developing; best technique depends on the specific problem being solved

Recommendations for Investment

- Sample preparation, separation, and introduction technologies for direct sampling and returned sample analyses
- Mitigation and reduction of contamination, including low-outgassing materials, maintaining spacecraft cleanliness through launch, and lessons learned from current and past missions;
- Curational and calibration facilities
- Laboratory and modeling studies to develop frameworks for the interpretation of mission data

Thanks to the CHONS Isotopes White Paper Team!

Bethany Theiling², Amy E. Hofmann³, Julie Castillo-Rogez³, Marc Neveu^{2,4}, S. Sona Hosseini³, Jessica Barnes⁵, Katherine de Kleer⁶, Thomas J. Barrett⁷, Heather B. Franz², Christopher R. Glein¹, Christopher H. House⁸, Ryan C. Blase¹, Mark J. Libardoni¹, Linda J. Spilker³, Mathieu Choukroun³, Brian J. Drouin³

¹Southwest Research Institute; ²NASA Goddard Space Flight Center; ³Jet Propulsion Laboratory, California Institute of Technology; ⁴University of Maryland College Park; ⁵University of Arizona; ⁶California Institute of Technology; ⁷The Open University; ⁸The Pennsylvania State University; ⁹Carnegie Institution of Washington; ¹⁰Mount Holyoke College; ¹¹Laboratory for Atmospheric and Space Physics, University of Colorado; ¹²Southwest Research Institute; ¹³Johns Hopkins University Applied Physics Laboratory; ¹⁴Washington University; ¹⁵Aix-Marseille Université; ¹⁶Arizona State University