Life Detection on Mars in the 2020s: Designing Instruments to Search for Molecular Signs of Life

Life Search Science and Technologies on Mars Planetary Science Decadal Survey 2022-2032 February 16, 2021

AMES RESEARCH CENTER

Dr. Mary Beth Wilhelm

Space Science and Astrobiology Division NASA Ames Research Center Moffett Field, California

Life Detection Strategy on Mars

- 1. Mars was most habitable early in its history (pre- to late- Noachian); evidence of life there will inform our search for life elsewhere in the Solar System.
- 2. Preserved organic matter bearing <u>origin-diagnostic</u> molecular features is one of the best indicators of past life.
 - Hydrocarbons detected in ~3 Gyr Martian mudstones (Eigenbrode et al., 2018; Freissinet et al., 2015) highlights the preservation potential for organics on Mars.
- 3. Sediments from long-habitable regions are ideal targets to search for preserved organics.
 - Understanding preservation processes in these environments is key to finding indicators of life.

Targeting Geologically Robust Molecular Signatures of Life

Lipids:

- Required for life (compartmentalization; membranes)
- Most abundant organics found in meteorites
- Longest preservation potential of any biomarker (~3 Gyr)
- Ancient-Marsrelevant

Geological Longevity of Major Molecular Biosignatures						
ORGANIC CLASS	CHEMICAL (STRUCTURE	BILI)	LIONS OF YEARS	5 AGO : 2	3 I	4+
DNA		~1 Myr				
Amino Acids Enantiomeric Excess)	COOH H R (L) HOOC H ₂ N H HOOC H ₂ N H C H R (D)	~10 Myr				
Proteins		~100 Myr				
Lipid s			~1.6 Gyr oldest confirmed syngenetic age			~3.4 Gyr
Keroge n			∼2 olde syr	2.7 Gyr st confirmed ngenetic age		oldest potential age 3

Origin-Diagnostic Lipid Features

Diagnostic patterns and features in molecular classes and structures will distinguish deviation from abiotic "baseline"

(e.g., Lovelock, 1965; Mißbach et al., 2018)

- 1. molecular weight and chain length
- 2. chain features (e.g., branching points, double bonds)
- 3. isomerization
- 4. aromaticity, unsaturations, and their structural consequences
- Origin-diagnostic lipid features are best revealed through solvent extraction techniques.

Key Challenges to Characterizing Origin-Diagnostic Features

1. Inorganic Interference & Organic Matter Complexity

- E.g., Oxidants, salts, sulfurous minerals (e.g., Mechlinska et al., 2012; Sephton et al., 2014; Tan et al., 2018)
- Molecular interactions of organics with minerals or in macromolecular matrices (e.g., see review: Kiel and Mayer, 2014; Lee et al., 2021)

2. Low Abundance & Geologic Heterogeneity of Biomarkers

• Common challenge in naturally occurring organic matter on Earth, especially in hyperarid deserts (e.g., Goordial and Whyte, 2014; Wilhelm et al., 2017)

3. Automation of Laboratory Sample Processing Techniques

• Sample prep is key to revealing origin-diagnostic features and overcoming inorganic interference, low abundance.

Sample Processing Techniques

Current Flight Extraction Technique: Pyrolysis (e.g., SAM, MOMA)

- Operationally more simple
- <u>High temperatures can be destructive</u> to origin-diagnostic features

"Gold Standard" Laboratory Technique: Solvent Extraction

- Efficient, preserves origin-diagnostic features for delivery to analytical system, overcomes challenges with inorganics, used for over 70 years on complex, natural organic matter
 - Laborious, human operator dependent

Translating Sample Prep from Lab to Planetary Instrument

- Fluidic technology for fundamental biology and astrobiology flown on ISS and small sat payloads (e.g., Ricco et al., 2007; 2011; Nicholson et al., 2011; Padgen et al., 2020).
- Translating this technology to ExCALiBR enables extraction of origindiagnostic molecules.

ExCALiBR ConOps Enabling Comprehensive 5-Stage Analysis with Preservation of Origin-Diagnostic Features and

BACKUP

Literature Review of Lipid Extraction

• Liquid extraction techniques have been used successfully for over 70 years to investigate the organic content of complex, natural samples.

Preliminary results from Buckner et al., in prep

Courtesy of Carina Lee