Hierarchy of High Impact Improvements in Bio Manufacturing

The National Academies of Sciences, Engineering & Medicine Workshop on Innovations in Pharmaceutical Manufacturing Session 3, Washington DC, 28 February 2020

Dr. Günter Jagschies

How does innovation impact the central dogma of regulatory surveillance?

- While regulators recommend to consider certain technology, they won't tell you what to use
- What they do tell you though (and will likely continue to do) is: "Show me the data!"
- What will change (or will it) when big data, proprietary modelling approaches and AI enter biomanufacturing?

Global Perspective on Biopharma Innovation

Selected Drivers for Healthcare Policy

 Irrevocable demographic change towards ageing & shrinking populations

 Human penetration of last natural resorts and new level of contact with global pathogen reservoir

 Business case versus health priority driven biopharmaceutical development & supply chain

Challenges for Industry & Regulators

- Pandemic of non-communicable diseases: e.g., cancer, diabetes, neurological disorders
- New & modified pathogens with changed medical need: e.g., from resistance and senior population
- Global disease burden secondary to pipelines, drug & vaccine shortages, affordability issues

Global Trends trigger improvement needs

Global needs and trends...

- Complexity & pace of change
- Portfolio diversification
- Business case attractiveness
 - Rare diseases in focus
 - Affordability of treatment
 - Drug & vaccine shortages

Problems to be solved...

- Facility output & Process yield
- Flexibility for portfolio & scale
- Simplification of operations
- Cost of infrastructure, quality and regulatory affairs

Path forward, the one-page summary

What are the basic features new technology needs to offer?

Max achievable productivity from a biologic facility is defined by the output per time from the installed production reactors

N-bioreactor & before:

- up with output
- down with time

Post N-bioreactor:

- up with yield
- match processing time

Integration of all steps & operations Simplification of the installations

Most process steps can be operated either in batch or continuous mode. Most equipment is available either in single-use or stainless steel.

Smaller scale - main CapEx reduction driver

Scale reduction – what will you see?

- More single-use technology with advanced control features
- Plug & Play unit operations in modular facilities
- Benchtop scale operation for many small-market therapeutics
- Closed processing for hygienic operation at (very) small scale
- Storage as a support operation disappears
- Inexperienced manufacturers consider manufacturing facilities

Process technology, what will you see?

- Progress with batch mode cell culture up to 10-15 g/L of mAbs
- Continuous mode productivity up to 60-80 g/L for mAbs
- Need to understand CQA effects of high productivity operations
- Affinity membrane-based capture of a reactor within 24 hrs
- In-process prep of buffers first fully algorithm driven operation
- Downstream methods for new impurity profiles, or lower yield
- CQA relevant monitoring & control in fast & continuous processes

Top ranking improvements – technical

- Controlling the impurity profile produced by cells in culture (a significant process yield issue)
 - Avoid impurities that are hard and expensive to deal with further downstream in the process (many product related impurities)
 - Purification technology that successfully removes very difficult impurities incl. aggregates and isoforms (second best for yield issue)
- Downstream technology matching top productivities from the bioreactor(s)
- CQA relevant in-process monitoring and control technology
- Managing big data in biomanufacturing, refining it for decisions

Top ranking improvements - economic

- Increase of facility productivity
 - High cell density loading of N-reactor (30% increase)
 - Ultra-high batch titers of 10-15 g/L (2-3x increase)
 - Continuous culture with "titers" equivalent to 50-60 g/L (≤ 10x increase)
 - Affinity membrane capture in <24 hrs (2x vs any column process)
- Reduction of facility size
 - Productivity increase x-fold as above enables y-fold lower process volumes and z-fold lower footprint (x > y > z)
 - Deletion of most storage tanks reduces footprint by significant doubledigit percentage (e.g., 60% in buffer prep area)

Biomanufacturing Reference

With permission: G Jagschies et al., "Biopharmaceutical Processing": Development, Design, and Implementation of Manufacturing Processes, Elsevier 2018

58 chapters covering

- ✓ Disease priorities
- ✓ Biopharma business
- ✓ Process capabilities & designs
- ✓ Principles & Methods
- ✓ Equipment & Facilities
- ✓ Analytics, Quality, CMC
- ✓ Industry case studies
- ✓ Economics of bioprocessing

100 authors, 1.200 pages