Noninvasive brain stimulation in neurorehabilitation

Riogld-Jamiston, MD, MS

Assistadic Profession of folie Neologyx,

& LTD, Israel

Physicad in getain & 181/Rehas, ilitation Dire & 101/, NU & OD; Rt & JF, f On Gognition

& FoundationNeural StimulationUniversity of Pennsylvania

NIBS in post-stroke neurorehabilitation

Post-Stroke Motor & Cognitive Deficits

- Common and debilitating
 Current therapies: Ineffective (at 1)
 typical doses)
- Recovery depends on network reorganization Aphasia

Paresis

Interhemispheric Inhibition Model

"Ald appted sf poer with angil loots some a .a 201se ful" -George E.P. Box

TMS Studies in Post-stroke Paresis

Hsu et al., Stroke, 2012

Contrastim and NICHE

Harvey et al., 2014, AHA/ASA International Stroke Conference

- Contralesional rTMS + OT vs sham +OT
- 20 rTMS/10 Sham
- 18 sessions/6 weeks
- 1 week, 1 month, 6 month follow-up
- 80% Clinically meaningful response rate
- Navigated Inhibitory rTMS in Contralesional Hemisphere Evaluation (NICHE)
 - Phase III trial
 - 2 years
 - 12 sites

	Real rTMS			Sham rTMS				Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
The global ATT score	•								
Weiduschat N 2011	19.83	8.2	6	8.5	9.95	4	10.1%	1.15 [-0.27, 2.57]	+
Hartmann A 2013	22.8	12.36	11	9.4	12.79	10	24.0%	1.02 [0.10, 1.95]	
Thiel A 2013	23.6	12.15	13	7.55	11	11	25.1%	1.33 [0.43, 2.23]	
Heiss WD 2013	22.4	1.77	15	8.6	10.06	14	25.4%	1.89 [0.99, 2.79]	
Subtotal (95% CI)			45			39	84.8%	1.39 [0.90, 1.88]	-
The global BDAE score									
Barwood CHS 2013	18.5	36.68	6	0.17	28.73	6	15.2%	0.51 [-0.65, 1.67]	
Subtotal (95% CI)			6			6	15.2%	0.51 [-0.65, 1.67]	
Total (95% CI)			51			45	100.0%	1.26 [0.80, 1.71]	
Heterogeneity: $Chi^2 = 3.79$, $df = 4$ (P = 0.44); $l^2 = 0\%$									
Test for overall effect: $Z = 5.44$ (P < 0.00001)									
Test for subaroup differences: Chi ² = 1.86. df = 1 (P = 0.17). l ² = 46.3%									

Ren et al., PLOS One, 2014

tDCS in Aphasia: Promising But Preliminary

- Small samples
- Clinical Heterogeneity
 -Aphasia type
 - -Chronicity
- Variable Parameters
- Limited Follow-up
- Promising studies ongoing (e.g. Fridriksson)

Multiple Mechanisms of Aphasia Recovery Adapted from Torres et al., 2013

Koch et al., 2012 Theta-burst stimulation of the left hemisphere accelerates recovery of hemispatial neglect

- Randomized, double-blind, sham-controlled
- 10 sessions cTBS over 2 weeks
- Intact left parietal cortex
- 2 week & 4 week follow-up (post-initiation of therapy)
- 18 subacute ischemic stroke
- Behavioral Inattention Test
- Bifocal TMS to assess frontoparietal excitability

BelParcielval linkitettioilint Test

tDCS Enhances Spatial Processing

Challenges to NIBS in Rehab

- No FDA-approved rehab indications to date
- Much research at proof-of-concept stage
- **Challenges to clinical development of TMS/tDCS**

•Phase I:

- Dose-effect relationships
- •Testing of potentially risky populations •Phase II/III:
 - •Recruitment/eligibility challenges
 - Heterogeneous patient populations
 - •Multiple sessions & attrition

•Phase III:

- Control group and blinding issues
- Heterogeneity of approaches
- •Small sample sizes/single sites

FDA Clinical Trial Phases:

Phase I: Screening for safety

Phase II: Smaller, controlled trials of efficacy

Phase III: Pivotal larger studies of safety and efficacy*

*Two positive phase III trials are required for FDA approval.

Other applications in brain injury

- TMS as a prognostic indicator of stroke outcomes
 - Motor tract patency
 - Marker of plasticity
- TMS pre-surgical mapping of motor function and language
- NIBs to treat motor, cognitive, neuropsychological disorders associated with TBI

Faculty

Postdoctoral Fellows

Roy Hamilton, MD, MS H. Branch Coslett, MD Sudha Kessler, MD

Rachel Wurzman, PhD Denise Harvey, PhD John Megdaglia, PhD

Students

Perelman School Of Medicine Catherine Norise Harrison McAdams

Penn School of Nursing Darina Petrovsky, MSN

Follow us on Twitter @PennMedLCNS LCNS email: braintms@mail.med.upenn.edu LCNS website: http://www.med.upenn.edu/lcns

Undergraduates Jay Gill Jill Sorcher Trevin Glasgow Menvekeh Daramay

Collaborators

Priyanka Shah-Basak, PhD Peter Turkeltaub, MD, PhD (Georgetown) Jared Medina, PhD (U. Delaware) Margaret Naeser, PhD (Boston University) Alvaro Pascual-Leone, MD, PhD (Harvard)

Research Staff

Olufunsho Faseyitan, MS Daniela Sacchetti, MS Juliann Purcell, MSc Felix Gervits, MA

