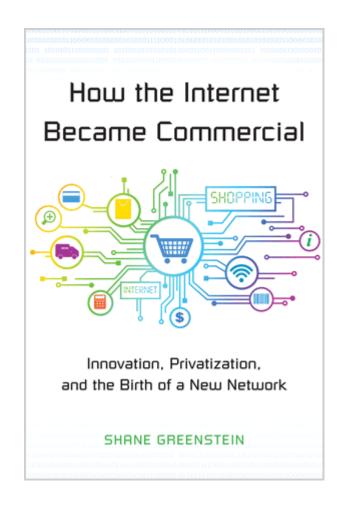
Technology Transfer and the Origins of the Commercial Internet. A few stories.


Shane Greenstein

Harvard Business School

Advancing Commercialization from Federal Labs

Starting point

- Many key inventions for the commercial internet came from government-subsidized R&D.
- I wrote a book that examined the creation of the commercial internet.
 From origins to blossoming.
- One theme of the book: governance of technology transfer made enormous difference.

Today: Four of six (plus) episodes of transfers

- Internet backbone. Transfer to private hands,
 & invent practices for data exchange.
- TCP/IP. Transfer to non-for-profit organization the standards body to help evolution of TCP/IP.
- World-Wide-Web. Establish organization to help WWW evolve.
- **Browser.** Transfer of prototype to private firms for commercialization.
- **Webserver software.** Transfer to private firms and not-for-profit organizations.
- Search engine. The transfer of that into private hands.

- Plus scores of routine licensing. Particularly in frontier fiber optic equipment. (Which the book largely does not discuss.)
- Today we will focus on four episodes (in red).
 - These three come close to your interests, as I understand them.
 - Can discuss the other three if curious.

Governance of technology transfer: themes

- Multiple channels for moving technology. Some planned and some not.
 - Give away assets and/or shareware.
 - License intellectual prop. Exclusive or widely.
 - Knowledge moves with people.
- Private firm actions have Incentives to help own interest, not necessarily to further societal goals.
- Universities have limited experience to judge which use-cases had private value.

Doubly challenging b/c

have interest in use-

universities.

commercial players often

cases that did not arise in

- Core issue for manager: how to stay consistent w/their mission?
- History's lesson: Good intentions not enough.
 - Lesson: approach w/humility.

World Wide Web

- Tim Berners-Lee an employee at CERN. Develops hypertext system.
 - Prototypes it at CERN. Given broad discretion.
- Makes available on shareware.
 - Starts to gain interest.
- TBL approaches IETF to get certification & standards endorse.
 - Pushback over ownership. He approaches CERN, who renounces property rights.

- Again, TBL approaches IETF.
 - Runs into "black-holes" of arguments → decides to start own standards organization to help w/growing use.
 - Approaches CERN management, who refuses to house it. Outside their mission.
- MIT becomes home for World Wide Web Consortium in 1994.
- Summary: The most important software of 90s moves to MA b/c IETF fails to certify, & CERN does not view its mission broadly.

The browser

- Browser at NCSA. Funded by NSF.
 - One of many projects. Unimportant initially. A few among hundreds.
 - Linux then Windows → popular.
- Transfer technology with licensing.
 - University faces state pressure to show revenue → moved to own, so could license → Intermediary started licensing → more than 100 licensees → eventually Microsoft → who put all other licensees out of business, except...one firm...
 - Eventually a fight w/MS about \$\$.

- Transfer technology with people.
 - Ownership/licensing angered lead
 programmer who graduates → moves to
 Palo Alto → w/Jim Clark starts Mosaic
 Communications Company. → sued for
 copyright (Mosaic) → changed name to
 Netscape → catalyzed industry.
- Bottom line: licensing seeds competition against a firm founded by the university's own students, who were more effective at catalyzing change.
 - Epilog: One employee, Eric Bina, goes back to university. Others remain angry.

The web server...

- Webserver is necessary to make browser useful. Designer (Eric Bina at NCSA) put webserver on shareware. Adopted widely.
- Netscape started → recruited Eric Bina to be among first employees. He accepted, left university with three days notice.
- University did not/could not find a replacement

 → webmasters got frustrated → start making
 their own improvements → combine their
 efforts after a year → establish Apache
 Foundation (A "patch"). Becomes leading
 webserver by beating all proprietary efforts.

- NCSA hires someone a year later, discovers what has happened, and tells NCSA it is pointless, and NCSA wisely gives up.
- Bottom line? Shareware + university neglect → leading webserver software.
 - Would any university action, such as licensing, have made this any better?

The search engine...

- Two graduate students create new algorithm in lab (on NSF funding).
 Implement a prototype.
- University patents it & tries to license to Valley firms. All say no.
 - Arm-chair QBs: Did the licensing ask for too much money? Did managers at Valley firms not understand what they could have?
 - Did prototype from Berkeley (Inktomi) set misleading example?
 - Was license alone not enough? Did it need inventor & added talent?

- Ironically, the failed licensing motivates students go ABD, start a company.
 - Help from Angel investor, founder of SUN, Andy Bechtolsheim.
 - Years to figure out how to make money.
 - Most profitable startup of the 90s.
- Epilog: Chinese PhD student at Cornell invents similar algorithm & university patents it. (Eventually settles w/Google over competing claims).
 - Concludes he cannot start a business in the US. He goes home and starts Baidu..

Some observations

- Transfers are difficult to govern.
 - Often more than one viable channel for transferring technology.
 - Inconsistent aims: wide diffusion, fast diffusion, or more revenue?
 - Tradeoffs b/w channels non-obvious.
- Governance of transfer plays a big role in the creation of private value.
 - Whether competitive or exclusive...
 - Whether favors established firms.
 - Whether catalyzes change

- Issues inescapable when technologies past prototypes.
 - Once something valuable emerges, private firms take a keen interest.
 - Licensor at information disadvantage.
- Good intentions were not enough.
 - Commercial actors often better informed about use-cases.
 - Policy slow to react to new events.
 - Shareware can be faster than active management of channels.

Thank you for your attention

More examples

TCP/IP

- Initial funding at DARPA
 - Establishes practices of sharing information with one another.
- Transfer to NSF
 - Establishes practices of making available information w/o restriction.
 - Similar to voluntary standards.
- Internet Engineering Task Force
 - 1987. For computer scientists.
 - Regular meetings. Governance.

- As the backbone privatizes,
 - IETF places under non-for-profit organization, the Internet Society, like any standard setting organization.
 - DARPA/NSF no longer solely in charge of governance.
- Licensing plays no role in the biggest transfer of all.
- All the academic work becomes available to anyone at no charge.
 - Practices similar to open source communities, initially without the formalism of open source.

Internet backbone

- Giving away assets.
 - IBM (i.e., IBM's lawyers) tried to manipulate the rules so it did not interconnect → become a monopolist on national backbone.
- Did not succeed b/c bad publicity
 → Congressional action.
- Fall out: Carrier outrage → establish data-exchange (CIX)
 - CIX example → NSF added exchanges to its privatization plan

- Narrow conclusion: Internet would have differed had IBM succeed.
 - Also would have differed had IBM not tried & failed → motivate CIX.
- Narrow conclusion: Saved by "honest policy wonks." See my book.
- Broad observation: Transferring assets a policy mess.
 - Exclusivity is biggest issue.
 - Inherent in the invention of something so valuable, where private firms have obvious interests.