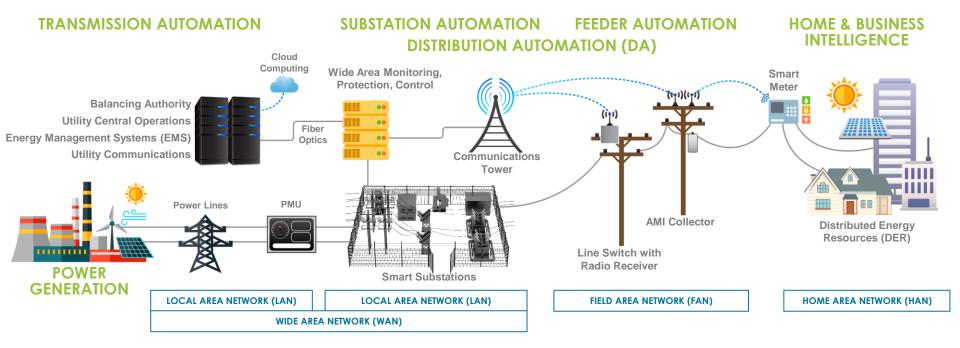
U.S. DEPARTMENT OF OFFICE OF CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE


Cybersecurity for Energy Delivery Systems (CEDS) Division Overview

Carol Hawk

Acting Deputy Assistant Secretary

March 4, 2019

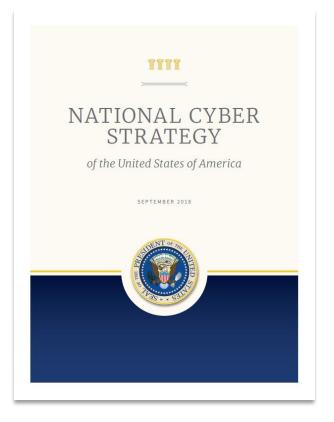
Electricity Delivery Infrastructure

2

Operational Technology (OT) and Information Technology (IT)

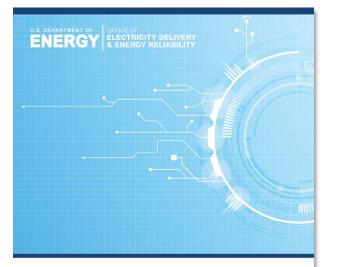
Energy delivery control systems are OT:

- Computers and networks that manage, monitor, protect and control energy delivery
- Cyber-attack can disrupt power, damage physical equipment, jeopardize public safety, economic prosperity and national security


Energy delivery cybersecurity OT solutions must be tailored to support operations

- No down time for system fixes power systems must operate 24/7 with high reliability and high availability
- Components are distributed over wide geographical regions, publicly accessible subject to tampering
- Legacy equipment and protocols not designed to support cybersecurity measures
- Latency is often unacceptable cyber solutions cannot slow system operations
- Active scanning of network can interfere with equipment operations
- Real-time emergency response capability is necessary
- Patches/upgrades require rigorous, prolonged testing

Physics Rules OT



National Cyber Strategy

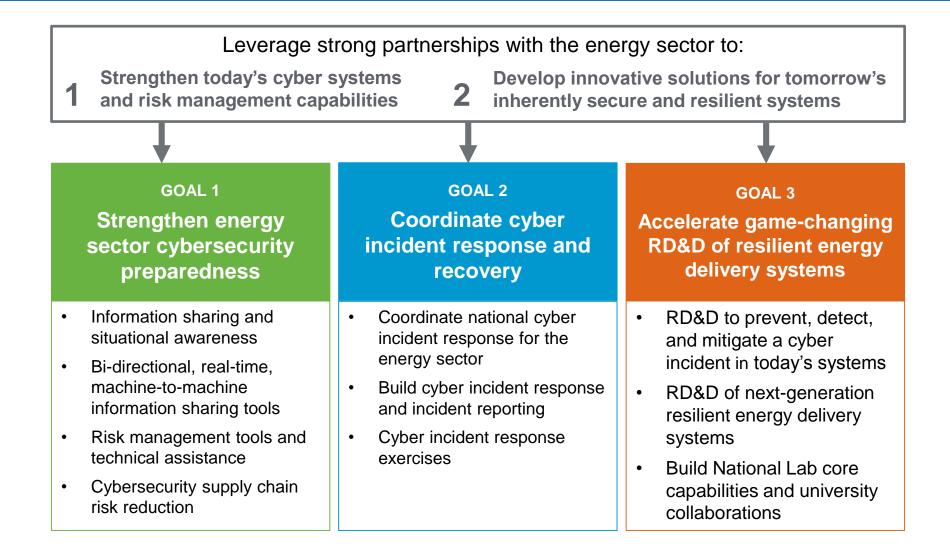
- First fully articulated national cyber strategy in 15 years.
- Outlines actions to
 - 1. Defend the homeland by protecting networks, systems, functions, and data
 - 2. Promote American prosperity by nurturing a secure, thriving digital economy and fostering strong domestic innovation
 - 3. Preserve peace and security by strengthening the United States' ability— in concert with allies and partners — to deter and if necessary punish those who use cyber tools for malicious purposes
 - 4. Expand American influence abroad to extend the key tenets of an open, interoperable, reliable, and secure Internet.

DOE CESER Multiyear Plan for Energy Sector Cybersecurity

Multiyear Plan for Energy Sector Cybersecurity MARCH 2018

- **DOE's strategy** for partnering with industry to protect U.S. energy system from cyber risks
- **Guided by direct industry input** on cybersecurity needs and priorities – complements the Energy Sector Roadmap
- Market-based approach encourages investment and cost-sharing of promising technologies and practices
- Establishes goals, objectives, and activities to improve both near- and long-term energy cybersecurity

DOE Vision


Resilient energy delivery systems are designed, installed, operated, and maintained to survive a cyber incident while sustaining critical functions

Strategy for a resilient electric grid

	Adversary Tier 1&2	Adversary Tier 3&4	Adversary Tier 5&6
Identify	Risk Assessment, Asset Inventory and Management, Critical Failure/Component Analysis		
Protect	Basic cyber hygiene	Encryption, Network Segmentation, Cyber grid planning tools	Firmware verification, Control verification
Detect	Anti virus	Data aggregation, threat detection	Cross-domain operational intelligence, novel data analytics for threat detection
Respond	Manual mitigation of known threats	Orchestration and remediation	Cyber-physical fault isolation, dynamic network segmentation
Recover	Manual	OT forensics analysis tools, cyber event reconstruction	Optimized black start strategies leveraging DER
Endure	Microgrids, Co	mponent diversification, Cy	vber safe mode

DOE's Strategy for Energy Sector Cybersecurity

140+ Partners Participating in CEDS R&D

Standards

Laboratory

Technologies

Schneider

Utility Advisors

Integration

Technologies

 Arkansas Electric Orange & Rockland Utility Pacific Gas & Avista Burbank Water Burbank Water BerA PJM Interconnection CenterPoint Energy Chevron Sacramento ComEd Dominion District Dominion District Dominion Electric San Diego Gas and Council of Southern Company Entergy Southern California FirstEnergy FirstEnergy Fre&L TVA Arkansas District Applied Applied Control Services Applied Control Solutions Cigital, Inc. Cigital, Inc. Cybati Critical Intelligence Cybati Schne Electric Sempra Grimm Grimm Grimm Secure Honeywell Utility Intel Intel Intel Network 				
 Arkansas Electric Orange & Rockland Utility Pacific Gas & Avista Burbank Water Pacific Gas & Avista Electric Burbank Water Pacific Gas & Electric Burbank Water Pacific Gas & Avista Electric BPA PJM Interconnection CenterPoint Energy Chevron Sacramento ComEd Municipal Utilities Electric Dominion District Doke Energy San Diego Gas and Electric Council of Snohomish PUD Entergy Southern Company Entergy Southern California FirstEnergy Fye&L TVA Alstom Grid Alstom Grid Applied Control Solutions Cigital, Inc. Cigital Intelligence Cigital Intelligence Cometa Municipal Utilities EPRI Siemeta Southern Company Honeywell Utility Intel Intel Intel Intel 	<u>Asset Ow</u>	ners/Operators	Solution Pr	<u>roviders</u>
• Virgin Islands Water	 Arkansas Electric Cooperatives Corporation Avista Burbank Water and Power BPA CenterPoint Energy Chevron ComEd Dominion Duke Energy Electric Reliability Council of Texas Entergy FirstEnergy FP&L HECO 	District Orange & Rockland Utility Pacific Gas & Electric PacifiCorp Peak RC PJM Interconnection Rochester Public Utilities Sacramento Municipal Utilities District San Diego Gas and Electric Sempra Snohomish PUD Southern Company Southern California Edison TVA Virgin Islands Water	 Alstom Grid Applied Communication Services Applied Control Solutions Cigital, Inc. Critical Intelligence Cybati Eaton Enernex EPRI FoxGuard Solutions GE Grid Protection Alliance Grimm Honeywell ID Quantique Intel NexDefense 	 Schneide Electric SEL Siemens
Power • WAPA • Open Information • Verac	Power	• WAPA		VeracityViaSat

- vvestar Energy Energy WGES
- NIPSCO

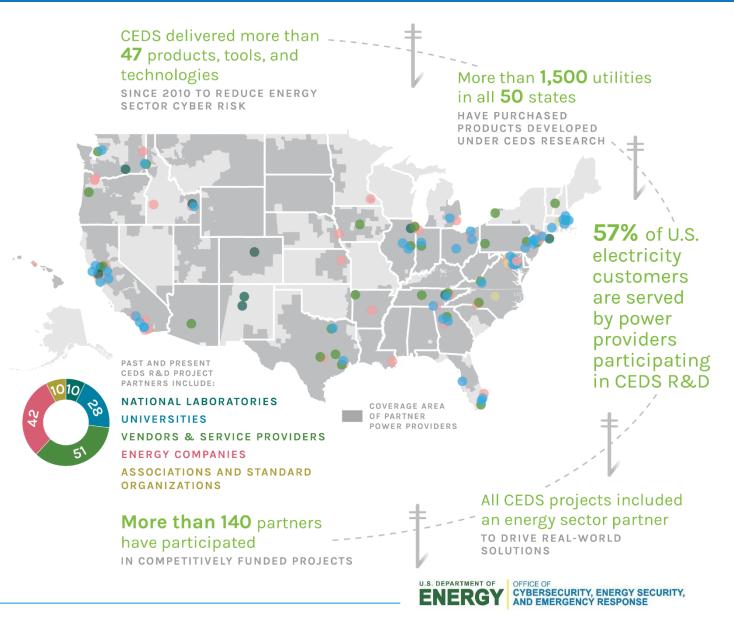
- lue
- - rmation Veracity
- Foundation

- Academia
- Arizona State University
- Carnegie Mellon University
- Dartmouth College
- Florida International University
- Georgia Institute of Technology
- Illinois Institute of Technology
- Iowa State University
- Lehigh University
- · Massachusetts Institute of Technology
- Oregon State University
- Rutgers University
- Tennessee State University
- Texas A&M EES
- University of Arkansas
- · University of Arkansas-Little Rock
- University of Buffalo SUNY
- University of Illinois
- UC Davis
- UC Berkeley
- University of Houston
- · University of Tennessee-Knoxville
- University of Texas at Austin
- Washington State ARTMENT OF NERG

National Labs

- Argonne National Laboratory
- Brookhaven National Laboratory
- Idaho National Laboratory
- Lawrence Berkeley National Laboratory
- Lawrence Livermore National Laboratory
- Los Alamos National Laboratory
- National Renewable Energy Laboratory
- Oak Ridge National Laboratory
- Pacific Northwest National Laboratory
- Sandia National Laboratories

Other


- Energy Sector Control Systems Working Group
- International Society of Automation
- NESCOR
- NRECA
- Open Information Security Foundation

OFFICE OF CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE

CEDS R&D Reach and Impact

Funds earlier, high-risk/highreward R&D in areas critical for national security where a business case cannot readily be established by a private-sector company

Builds R&D pipeline through partnerships with energy sector utilities, vendors and service providers, universities, and national laboratories

9

MYP GOAL 3: Accelerate Game-Changing RD&D of Resilient Energy Delivery Systems

PRIORITIES AND PATHWAYS

Research, develop, and demonstrate tools and technologies to:

1. Prevent, detect, and mitigate cyber incidents in *today's energy delivery systems*

- Decrease the cyber attack surface and block attempted misuse
- Decrease the risk of malicious components inserted in the supply chain
- Enable real-time, continuous cyber situational awareness
- Automatically detect attempts to execute a function that could de-stabilize the system when the command is issued
- Characterize cyber incident consequences and automate responses

2. Change the game so that *tomorrow's resilient energy delivery systems* can survive a cyber incident

- Anticipate future grid scenarios and design cybersecurity into systems from the start
- Enable power systems to automatically detect and reject a cyber attack, refusing any commands/actions that do not support grid stability
- Build strategic partnerships and core capabilities in National Labs

Example Outcomes for Securing *Today's* Energy Delivery Systems

EXAMPLE OUTCOMES

Tools and technologies to *prevent* cyber attacks:

- Quantum key distribution to securely exchange data using cryptographic keys while detecting attempted eavesdropping
- Algorithms that continuously and autonomously assess and reduce the cyber attack surface

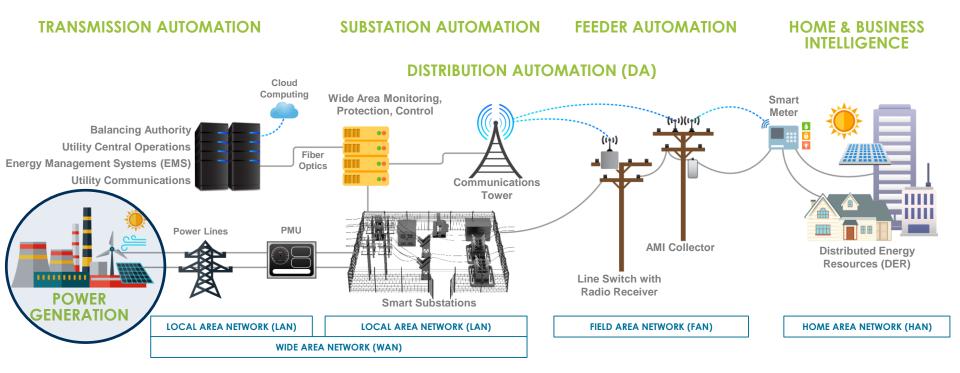
Tools and technologies to *detect* cyber attacks:

- Rapid anomaly identification that may indicate a compromise in utility control communications
- Tools to detect spoofing or compromise of the precise GPS time signals used for synchrophasor data

Tools and technologies to *mitigate* cyber attacks:

→ Ability for high-voltage DC systems to detect when commands could destabilize the grid and reject the command or take a different action

Example Outcomes for *Tomorrow's* Resilient Energy Delivery Systems

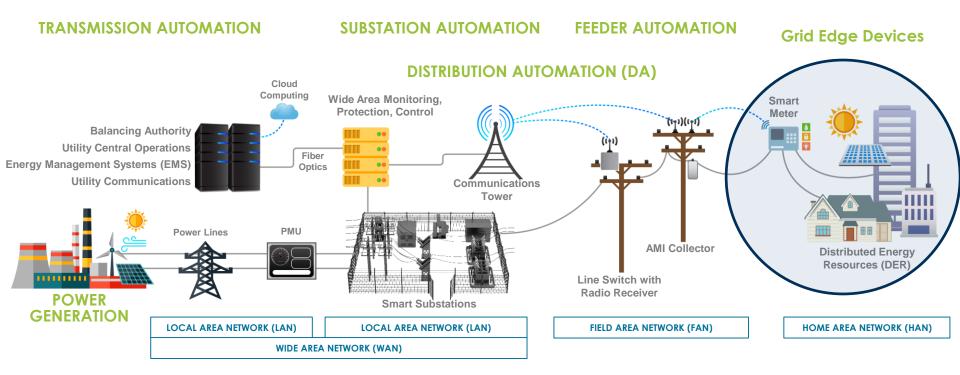

EXAMPLE OUTCOMES

Tools and technologies to anticipate future grid scenarios, design in cybersecurity, and enable power systems to automatically recognize and reject a cyber attack:

- Architectures that secure the cyber interaction of grid-edge devices and data streams in the cloud
- Resilient building energy management systems that can switch to a more secure platform during a potential cyber incident
- → A cyber-physical control and protection architecture for multi-microgrid systems that enable stable grid performance during a cyber attack using electrical islands
- Resilient operational networking technology that automates cyber incident responses

Build strategic core capabilities at 10 National Laboratories and build multi-university collaborations dedicated to advancing EDS cybersecurity

Redesign the architecture, adapt to survive GE Cyber-Attack Detection and Accommodation for power plants

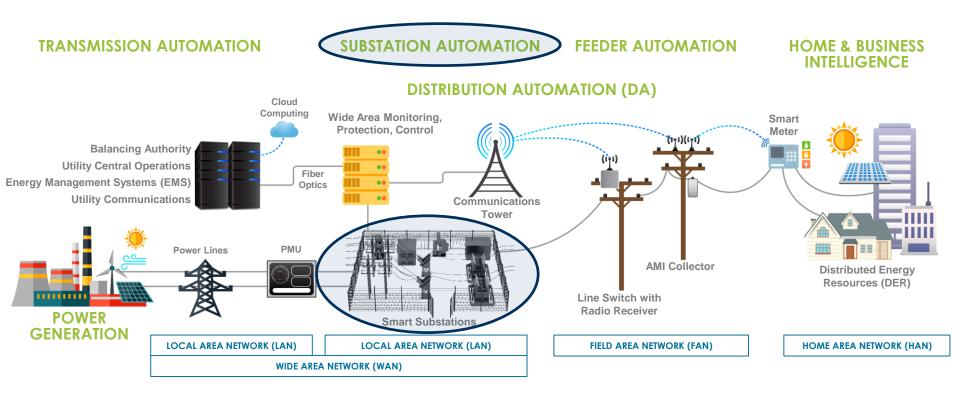


Redesign the architecture, adapt to survive GE Cyber-Attack Detection and Accommodation for power plants

MYP objective:		
Characterize cyber incident consequences and automate	We are	
responses	developing a new method of Cyber-attack Detection and Accommodation (ADA) framework to control how a power plant communicates and stops unauthorized attacks on a power plant protection.	So what?
		Power plants ride through a cyber-attack while continuing to provide power.
PROJECT LEAD	CURRENT ACCOMPLIS	SHMENIS
GE Global Research PARTNERS	Plant model and real-time s	<u>detection</u> capability using GE Power sensor data sets. (0.0006% FPR) ack <u>localization</u> (sensor and nodes)
GE Power	 Exercised <u>neutralization</u> lo accommodation to adapt ar 	
		U.S. DEPARTMENT OF OFFICE OF

CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE

Redesign the architecture, adapt to survive Adaptive Control of Electric Grid Components for Cyber-Resiliency



Redesign the architecture, adapt to survive Adaptive Control of Electric Grid Components for Cyber-Resiliency

MYP Objective				
Anticipate future grid	We are			
scenarios and design cybersecurity into systems from the start	developing adaptiv algorithms for distri- energy resources, regulation, and pro systems; and analyzing new scenarios and asso defensive strategie	ibuted voltage tection attack ociated	So what? Power systems automatically reconfigure to use trustworthy equipment instead of possibly compromised equipment to sustain operations during a cyber- attack.	
		CURREI	NT ACCOMPLISHMENTS	
	Arizona State University	defensive DER sma protection	ng reinforcement learning-base algorithms determine the setti rt inverters and utility voltage a systems needed to mitigate co vsical attacks.	ngs c Ind
_ 16	rei siemens		U.S. DEPARTMENT OF ENERGY OFFICE OF CYBERSECURITY, ENERG AND EMERGENCY RESPO	Y SECURIT

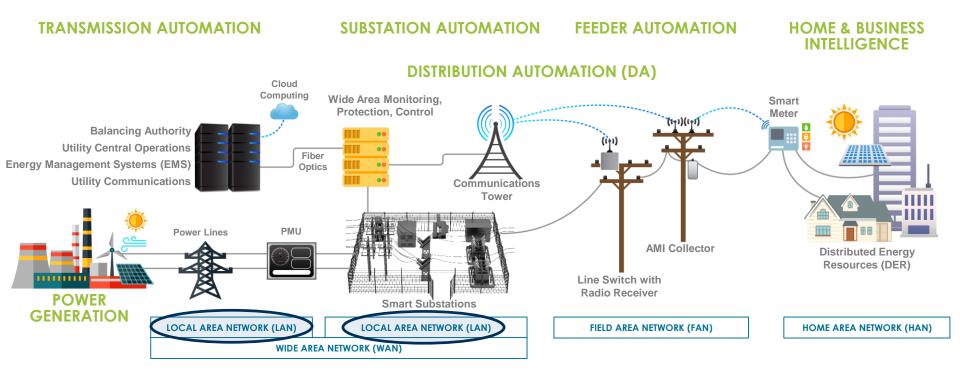
Redesign the architecture, adapt to survive ABB Collaborative Defense (CODEF) for protection and control equipment

17

Redesign the architecture, adapt to survive ABB Collaborative Defense (CODEF) for protection and control equipment

MYP Objective			
Automatically detect attempts to execute a function that could destabilize the system when the command is issued	We have Developed protection and control relays that collaboratively anticipate the operational consequences of inputs, configuration changes, or power system data.	So what? Prevents execution of malicious commands that might jeopardize grid stability.	

PROJECT LEAD



CURRENT ACCOMPLISHMENTS

- Demonstrated in a quasi field environment utilizing the substation automation protocol IEC 61850-enabled ABB protection relays configured with actual BPA high voltage line and transformer protection settings.
- Demonstrated attack detection on intelligent electronic device (IED) configurations and prevention of malicious command execution.

Redesign the architecture, adapt to survive Software Defined Networking (SDN) and Chess Master Project

Redesign the architecture, adapt to survive Software Defined Networking (SDN) and Chess Master Project

MYP objective			
Decrease the cyber attack surface and block attempted	We have		
misuse	Developed the industry's first software defined operational network, to simplify and strengthen security for substation and control center operational networks.	So what? Deny-by-default any unexpected cyber-activity, and pre-engineer traffic shaping for cyber-attack response.	

PROJECT LEAD

PARTNERS

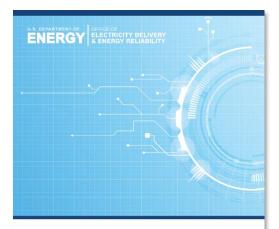
20

CURRENT ACCOMPLISHMENTS

- Commercial product released the SEL-2740S (SDN Switch) and SEL-5056 in the industry's first commercial industrial flow controller
- Completed the API between Flow Controller and security state monitoring
- Demonstrated the integrated threat management platform to engineer networks and define how the networks will react to events like link loss or unauthorized packets at 2018 DistribuTECH

U.S. DEPARTMENT OF

CYBERSECURITY, ENERGY SECURITY,


Coordination with Other Federal Cybersecurity R&D Programs

- Primary mechanism for U.S. Government, unclassified Networking and IT R&D (NITRD) coordination
- Supports Networking and Information Technology policy making in the White House Office of Science and Technology Policy (OSTP)

For More Information, Please Contact:

Multiyear Plan for Energy Sector Cybersecurity MARCH 2018

Dr. Carol Hawk Acting Deputy Assistant Secretary Cybersecurity for Energy Delivery Systems (CEDS) Division Office of Cybersecurity, Energy Security, and Emergency Response (CESER)

Carol.Hawk@hq.doe.gov 202-586-3247

Visit: https://www.energy.gov/ceser/office-cybersecurity-energy-security-and-emergency-response

