Biodosimetry Tools to Support Long-Term Health Monitoring After a Large-Scale Radiological Event

David Brenner Center for Radiological Research Columbia University

djb3@columbia.edu

The Scope of the Problem

A 20 kT ground burst IND in New York City

Dose range (Gy)	# Exposed	# Surviving Assuming conventional medical care, LD ₅₀ =6 Gy	# Surviving Assuming enhanced mitigators available (LD ₅₀ = 8 Gy)
2 – 3.2	910,000	900,000	910,000
3.2 – 4.8	500,000	450,000	495,000
4.8 – 7.2	200,000	100,000	170,000
> 7.2	600,000	120,000	300,000
Any dose >3.2 Gy	1,300,000	670,000	965,000

- Doses from CATS-JACE simulation
- LD₅₀ data from Anno et al (2003)
- Deaths due to thermal effects and blast not included

Should we be particularly worried about the long term health of survivors who received very high doses?

Recent epidemiology suggests that cancer risks are <u>not</u> small at large doses

Radiation-induced breast cancer Radiation-induced lung cancer Lung cancer excess relative risk Breast cancer excess relative risk Hodgkins data Hodgkins data **Repopulation model Repopulation model** Simplified model Simplified model Dose (Gy) Dose (Gy)

The Scope of the Problem

After a large-scale IND we would want to estimate the individual doses to ~1 million people, with relevant doses between 2 and 10 Gy

Biodosimetry

The use of radiation-induced biomarkers in biological material to assess past personal radiation exposure

Biodosimetry takes into account individual radiation sensitivity

DISTRIBUTION OF BIOLOGICALLY-BASED RESPONSES

Radiation Biodosimetry: What do we measure?

- DNA damage
- "omic" changes
 - Transcriptomics
 - Proteomics
 - Metabolomics
- EPR, OSL

Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies

PUBLICATION DATE: SEPTEMBER 2011

Radiation biodosimetry is a well established technique...

But....

- These cytogenetic assays are quite labor intensive, so throughput is an issue
- The assays generally don't work at doses above ~5 Gy

National / International Biodosimetry Networks

BioDoseNet: Biological dosimetry laboratory immediate response capacity, 2009

WHO BioDoseNet

- 57 laboratories worldwide
- Total international capacity close to 10,000 per month

"Obviously, this capacity is nowhere near the throughput that would be required in a large mass-casualty radiological event, but it would definitely cover the needs for all the accidents that have happened up to now"

Maznyk et al 2012

High Throughput: Automation

Converting manually-based radiation biodosimetry assays to high throughput:

- Automated sample preparation
- Automated sample readout

RABiT: Rapid Automated Biodosimetry Tool

- Fully-automated high-speed robotic biodosimetry workstation
 Use of commercial robotic cell handling systems
- Automated sample prep and automated imaging
- Automates well-established assays such as micronucleus and dicentric
- Single fingerstick of blood
- No further human intervention after samples put into the RABiT

The main technical innovations are:

- 1) Complete full automation of biological assay, with *in-situ* imaging in multi-well plates
- 2) Fully automated imaging

Current throughput: 6,000 samples/day

Radiation biodosimetry is a well established technique...

But....

- These cytogenetic assays are quite labor intensive, so throughput is an issue
- The assays generally don't work at doses above ~5 Gy

TABLE 1. COMPARISON OF CYTOGENETIC ABERRATION ASSAYS USED FOR DOSE ASSESSMENT^a

	Cytogenetic Aberration Assays				
	Premature chromosome condensation (PCC)	Dicentric (and ring) (DCA)	Fluorescent <i>in situ</i> hybridization (FISH)	Cytokinesis-bloc micronucleus (CBMN)	
Typical aberrations	excess chromosome fragments;	dicentrics ^b (and rings)	dicentrics ^b (and rings)	micronuclei	
dosimetry applications	dicentrics [®] and rings translocations ^b		translocations ^b	nucleoplasmic bridges	
Typical radiation scenario applications	acute	acute protracted	acute protracted	acute protracted	
Photon equivalent, acute dose range (Gy) for whole-body dose assessment	0.2 to 20	0.1 to 5	0.25 to 4	0.3 to 4	

The Scope of the Problem

A 20 kT ground burst IND in New York City

Dose range (Gy)	# Exposed	# Surviving Assuming conventional medical care, LD50=6 Gy	# Surviving Assuming enhanced mitigators available (LD50= 8 Gy)
2 - 3.2	910,000	900,000	910,000
3.2 – 4.8	500,000	450,000	495,000
4.8 – 7.2	200,000	100,000	170,000
> 7.2	600,000	120,000	300,000
Any dose >3.2 Gy	1,300,000	670,000	965,000

The standard assays are useful up to about 5 Gy...

Micronuclei (Columbia, unpublished)

Dicentrics, Quina et al 2000

Why don't these cytogenetic assays work above ~5 Gy?

- Checks for DNA damage
- Prevents highly radiation-damaged cells from moving though to mitotic cell division

Caffeine releases lymphocytes from the G2 checkpoint

The Future of Radiation Biodosimetry

Can we provide high-throughput biomarker-based methodologies to identify individuals who are particularly sensitive to

- 1) acute radiation syndromes, or
- 2) long-term radiation health effects

Individualized radiation biomarkers predictive of future long-term radiation-induced disease

e.g. Can gene expression predict future pneumonitis?

- Thoracic radiation dose to mice where half will die from pneumonitis and half will recover
- Profile gene expression in blood at intervals before and during manifestation of disease

Columbia Center for High-Throughput Minimally-Invasive Radiation Biodosimetry

Center for High-Throughput Minimally-Invasive Biodosimetry

www.cmcr.columbia.edu

Issues for a Useful High-Throughput Radiation Biodosimetry System

- Processing throughput
- Sensitivity / specificity
- Precision / accuracy
- Processing time
- Signal stability
- Internal emitter exposure
- Partial body exposure
- Neutron sensitivity

Errors in individual dose estimates make a major difference to the downstream epidemiology

