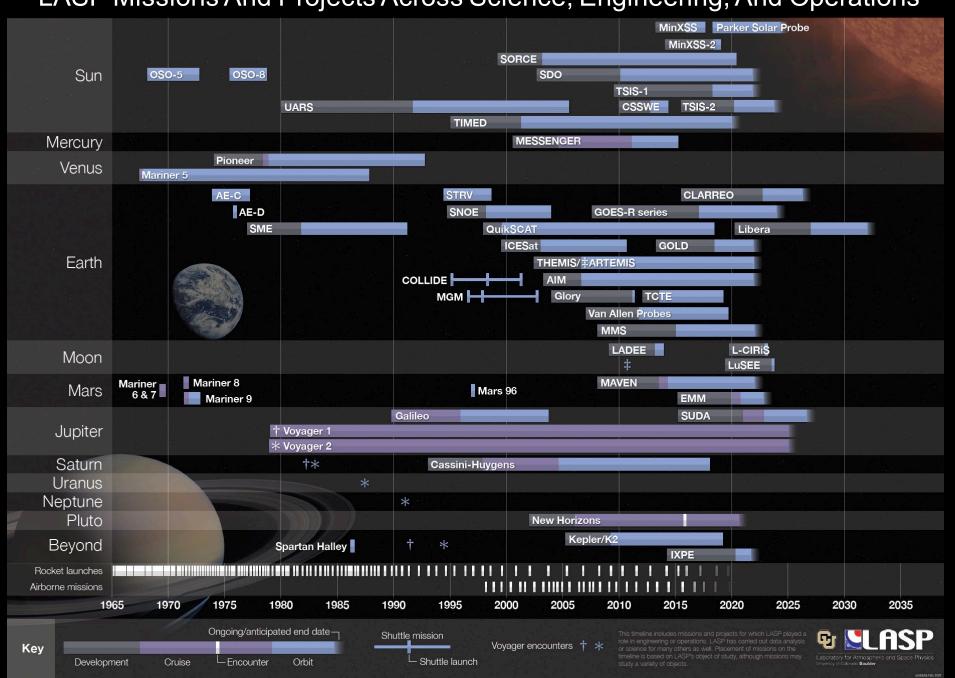
Proposal Process And P.I. Diversity At University Of Colorado's Laboratory For Atmospheric And Space Physics


Bruce Jakosky

Associate Director for Science LASP/University of Colorado bruce.jakosky@lasp.colorado.edu 12 March 2021

Topics to be addressed

- LASP as a Research Institute at the University of Colorado
- Outline of the steps of proposal development
- Current institutional policies/criteria, if any, for selecting P.I.s and team members
- The institutional supports, if any, that are available to potential P.I.s.
- Issues and concerns for proposals
- P.I. diversity issues

LASP Missions And Projects Across Science, Engineering, And Operations

LASP as a Research Institute at the University of Colorado (1 of 2)

High-level objectives include

- Designing, building, testing, operating spaceborne, airborne, and balloon instruments to obtain measurements that address fundamental science questions
- Analyzing data from these and other instruments/missions, laboratory, and theoretical approaches to reach science conclusions
- o Identifying follow-on science questions to be addressed and implementations to do so
- Training the next generation of scientists and engineers

Science disciplines

- Solar/stellar physics
- Space physics
- Earth atmosphere and upper atmosphere
- Planetary science
- Interdisciplinary areas (e.g., astrobiology, space weather, exoplanets)

LASP is divided into divisions that work closely with each other

- Science
- Engineering
- Mission Operations and Data Systems
- Administration/IT

622 employees total, predominantly soft money

- 107 Ph.D. scientists; 27 are University-supported in tenured/tenure-track faculty (joint with academic departments)
- ~275 professionals in Engineering and MODS
- o 154 students (grad plus undergrad, mostly in science and mission ops)

LASP as a Research Institute at the University of Colorado (2 of 2)

- LASP is the only research lab in the world to have flown instruments to all the planets (whether there are 8 or 9 planets)
- ~23 LASP-built instruments currently operating in space on 14 different missions, from Earth orbiting to Mars to the Kuiper Belt
- Instruments for ~20 different missions in development, from cubesat to GOES to Europa Clipper
- Currently carrying out science ops for 142 instruments and mission ops for 3 spacecraft
- LASP has built spacecraft with size class varying from cubesat (e.g., MinXSS) to small spacecraft (SNOE) to interplanetary (Hope Emirates Mars Mission, in collaboration with UAE)
- P.I.-led missions include (most recent first, not including cubesats or sounding rockets):
 - Libera, P.I. Peter Pilewskie (in development)
 - Hope Emirates Mars Mission, not P.I.-led but many similar attributes
 - Total and Spectral Solar Irradiance Sensor (TSIS, on ISS), P.I. Peter Pilewskie
 - o Global-scale Observations of the Limb and Disk (GOLD, on a commercial comm sat), P.I. Richard Eastes
 - o Mars Atmosphere and Volatile Evolution (MAVEN), P.I. Bruce Jakosky
 - Aeronomy of Ice in the Mesosphere (AIM), P.I. James Russell III
 - o Solar Radiation and Climate Experiment (SORCE), P.I. Gary Rottman
 - Student Nitric Oxide Experiment (SNOE), P.I. Charles Barth
 - Solar Mesosphere Explorer, P.I. Charles Barth

Outline of the steps of proposal development

Origination of mission concept

- o Grass roots potential P.I. comes forward with an idea (P.I. can be internal or external to LASP)
- Focus-group discussion (mainly among scientists) what missions are compelling or are called out in the NASEM Decadal Strategies or NASA Strategic Planning documents
- o Identification of potential missions/opportunities from senior leaders in the lab or externally

Evaluation by Proposal Development Committee

- o PDC consists of senior people from science, engineering, ops, admin, lab leadership
- First evaluation leads to detailed development of concept
 - Is it a credible/viable concept?
 - Is the proposed teaming appropriate, are there gaps?
- Science evaluation
 - Is the science high priority, is it responsive to the anticipated AO?
 - Will the science close? Will it make the right measurements, will they answer the questions?
- Second evaluation is the concept mature enough and is the team ready to write a proposal?

Budget review, throughout and just prior to submission

- o Is the budget in scope, complete, adequate reserves, etc.?
- LASP cannot support all of the good ideas, so some concepts may get dropped at each stage

Current institutional policies/criteria, if any, for selecting P.I.s and team members

- Typically, P.I. proposes mission concept to the lab, rather than the lab selecting a P.I.
- Evaluation of mission concept necessarily includes an evaluation of the capabilities of the P.I.
- P.I. typically selects team members, with input/advice from PDC
 - Science team members: Advice typically centers on whether the necessary expertise is there, whether there are gaps, size of team, diversity of team; necessarily involves evaluation of the individuals
 - Instrument providers: Are they the right instruments, are the providers credible?
 - Spacecraft providers: Selected by P.I. with input from PDC and senior members of the lab
- LASP is continually looking to identify potential instrument or mission P.I.s and to help them develop

The institutional supports, if any, that are available to potential P.I.s

- Some (limited) internal funding available to all scientists to help with proposal development
- Internal R&D funding available for advance development of relevant technology or concept; open across the entire lab, via short proposal
- Internal workshops on all aspects of flight proposals and missions, to aid those interested in proposing hardware or missions; open to all scientists
- Opportunity for early interaction of scientists with engineering staff on viability of concept and approach
- Internal funding required for supporting concept and proposal development
 - Support both for developing concept and for writing the proposal; includes science, engineering, ops, budget, admin support
 - Investment necessary from all institutional partners

Issues and concerns for proposals (1 of 2)

Resources necessary to support competitive mission proposals are becoming prohibitive

- Proposal competition has gotten more intense over the last several decades, requiring investment of increasing funds up front to support development even before a proposal is written
- There are fewer flight opportunities, so that, increasingly, each one is a "must win" for every institution;
 space-research laboratories are at risk
- Movement toward small spacecraft (such as cubesats) is potentially problematic for maintaining and enhancing cutting-edge research capabilities at hardware institutions
- A Discovery- or New-Frontiers-class mission proposal requires an investment of \$2-3M or more to develop and write the proposal
 - Costs typically shared among partner institutions
 - Missions often require additional technology development in order to be credible; we've heard stories
 of investments of close to \$10M
 - These investments typically have to come from within the LASP operating budget, and are not provided separately from the University

Issues and concerns for proposals (2 of 2)

General concern over developing the next generation of instrument and mission P.I.s

- We recognize that there is not a single pathway to being a P.I.; can include starting with smaller projects (sounding rockets, cubesats, instrument P.I.), being Co-I on preceding instruments/missions, being IDS on a mission, being a senior researcher
- Few opportunities for scientists to develop broad science, mission, and management background that will help in being credible in a proposal or in succeeding as a mission P.I.
- o The community must ensure that we have well-prepared scientists in general who can fill the P.I. role
 - The highest-priority goal has to be mission success; to help ensure that, we need knowledgeable and effective individuals in the P.I. role
 - We must ensure that women and under-represented minorities have the training/educational opportunities to be prepared for these roles and are not discriminated against in lead-up opportunities, in P.I./mission selection, or in team-member selection
 - Has to be done at all levels the community, SMD, individual labs like LASP, individuals

P.I. Diversity Issues

- Everybody has a compelling interest in ensuring equality of opportunities leading up to becoming P.I.
 - o Cannot separate P.I.-diversity issues from general issue of P.I. and mission development
- Long-term, the best ways to ensure P.I. diversity are:
 - Provide early-career opportunities to get relevant experience along the career ladder (science Co-I, management opportunities, NASA and NASEM committees, smaller missions such as cubesat/rocket)
 - Provide educational opportunities along the way, along the lines of the JPL summer schools or the P.I.
 workshops; keep these open to everybody to ensure we have the best chance to have effective P.I.s
 - Enhance opportunities for one-on-one mentoring by senior scientists; again, not limited to diversity categories
- Short-term, there absolutely are diverse candidates who can be effective P.I.s today
 - Ensure no intentional or unintentional impediments to their assembling teams, submitting proposals, and being selected
 - o A wide range of individuals can be effective as P.I. if paired with an appropriate Project Manager and team
 - Trade-off between leadership by P.I. versus by P.M.; risk of losing value of having a P.I.-led mission
- No education or training courses can take the place of personal experience in real situations
- Enhancing diversity among P.I.s requires a long-term, broad-based approach, operating throughout individuals' careers rather than just when selecting a P.I.