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o Observe some phenomenon
o Make a mathematical model. This should be precise but generally

includes some simplification.
o Make conclusion from the mathematical model using

o Rigorous mathematical theorems
o Heuristic (nonrigorous) arguments
o Computer calculation and in case of random models, Monte Carlo

simulations

o Check mathematical predictions with real world
o If wrong, either model is wrong or mathematical deductions were

incorrect
o Users of mathematics should always understand the assumptions in

mathematical models even if they do not understand the mathematical
derivations.

Applying mathematics to 
the “real world”
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o Probability is the area of mathematics that incorporates
randomness in the mathematical model.

o This randomness might indicate some “real” randomness or just lack
of total information about the behavior

o Statistics is the inverse of probability — view the real word and try to
determine the appropriate mathematical model and the parameters.

o Flip a fair coin, what is the probability that one gets 18 heads out of 20?
(probability problem)

o Flip a coin, get 18 heads out of 20, and then ask: is the coin fair?
(statistics problem)

o Cannot do statistics without good background in probability.

Probability
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Basic model for random motion: a random walker takes
independent random steps at each time unit.
Sn = position after n steps

Sn = X1 + · · · + Xn

Sn

1 2 3 4 5 6 7 8

n

0

−1

−2

−3

3

2

1

P{ Xj = +1} = P{ Xj = − 1} = 1/2

Random walk / Brownian motion 
(Completely) random continuous motion
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o Brownian motion or Wiener process is the continuous
analog of this.

o In a small time increment ∆ t one chooses moves a
distance (either positive or negative) of size (∆t)1/2.

o For small ∆ t, (∆t)1/2 » ∆ t. However, since there are both
positive and negative jumps there is a lot of cancellation.

o From this we see that Brownian paths are nowhere
differentiable.

o This can be done for random motion in any number of
dimensions.

o The principle ∆Wt ≈ (∆t)1/2 is always true for completely 
random, continuous motion.
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o What is the fractal dimension α of a random walk or Brownian path?
o For random walk, we define this roughly by: in the ball of radius N the

random walker visits Nα points.
o Equivalently, the number of steps needed to reach distance N is Nα .
o For random walk, α = 2: this follows from the basic scaling rule for random

walk or Brownian motion,

∆ Wt ≈ (∆t)1/2.

Fractal dimension of random paths
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dy(t)
dt = F (t , y(t)),

dy(t) = F (t , y(t)) dt.

At time t, the process moves F (t , y(t)) ∆ t in time ∆ t.

Usual calculus and
differential equations
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dXt = m(Xt )dt + σ(Xt )dWt

where Wt is a Brownian motion.

o From time t to time t + ∆ t , Xt moves m(Xt )∆ t plus a random jump with mean
0 and standard deviation σ(Xt )(∆t)1/2

o This is basic mathematics of diffusion used in physics, chemistry, biological
sciences

o This is also the main tool for mathematical finance such as the Black-Scholes
formula for pricing options.

o The “average” value of process satisfies elliptic and parabolic partial differential
equations (PDE).

o Paths look like Brownian motion paths with a little “drift”. They have fractal
dimension α = 2

Stochastic calculus
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o In statistical physics, there are many models of
curves with very strong interactions.

o For example, polymer chains can be represented as
random walks with the requirement that the chain
does not cross itself. (Flory)

o Lattice model (self-avoiding walk) : give all
random walk paths of the same number of steps
the same probability

Harder problem: 
walks with self repulsion
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o Unlike usual random walk and Brownian motion, these
processes are nonMarkovian. The future evolution of a
curve depends on the entire past and not just on the
current position.

o Self-avoiding walk is only one of many models arising in
statistical physics “at criticality” where fractal curves
arise.

o Another model is the loop-erased random walk obtained
from a usual random walk and erasing the loops.

o Other curves arise as interfaces such as the
percolation exploration process that we will see.
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Figure: Self-avoiding walk (simulation by V. Beffara)
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Figure: Loop-erased walk (simulation by F. Viklund)
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In Benoit Mandelbrot’s book Fractal Geometry of Nature we see
another walk with self-avoidance. This is the outer boundary or
frontier of a two dimension random walk.
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Figure: Percolation exploration process (simulation by G. Grimmett)
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o If the spatial dimension is 4 or greater, than random paths do not tend
to intersect (paths are two dimensional)

o The interesting dimensions are d = 2,3.
o Focus on fractal dimension α: In the ball of radius N one visits

about Nα points.
o The number of steps needed to reach distance N is Nα . Flory

predicted α = 4/3 for d = 2 and α = 5/3 for d = 3. He was correct for d
= 2 but (we expect) slightly wrong for

o d = 3, α = 1/.588···.

Critical dimension for paths with self 
repulsion
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Conformal invariance for two
dimensional systems

o It was first predicted nonrigorously by theoretical physicists that two
dimensional systems exhibit conformal invariance in the limit.

o Conformal invariance implies that a function is locally a dilation and
a rotation. For d = 2 this is the same as being complex
differentiable and one-to-one.

f

f(w)f(z)
z w
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o Brownian motion had already been shown to be
conformally invariant. ”Random continuous motion” is
rotationally invariant and has a kind of scale invariance.

o There have been incredible advance in the last twenty
years on rigorous analysis of conformally invariant random
planar fractals. The limit curves are called Schramm-
Loewner evolutions.
o Polymer (Self-avoiding walk) α = 4/3. Loop-erased

random walk α = 5/4.
o Percolation exploration process α = 7/4.
o The outer boundary of random walk is α = 4/3.
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o Can we define a process γ(t) that is continuous, avoids the past, and is a
potential limit for either the self-avoiding walk or the loop-erased
random walk?

o It should have a fractal dimension α and satisfy the scaling rule
|∆ γ(t)| ≈ (∆t)1/α .

For SAW, α a little bigger than 5/3; for loop-erased walk, a little
smaller.

o Can α be determined exactly or is it just an unknown constant? There is
no reason to expect nice rational numbers of values for the fractal
dimensions.

o For percolation the separation between white and black sites would be a
random fractal surface.

Three dimensions: 
many open problems
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Estimation of Ethnic Ancestry

• Major companies such as Ancestry.com exist to help people understand
their origins.

• Population stratification is a potential confounding factor in genetic association
studies. Estimated ancestries, derived from multi-locus genotype data, can serve
as covariates (predictors) to correct for population stratification.

• Competing software: Structure uses Bayesian MCMC, Eigenstrat uses
principal components, and Frappe uses an EM algorithm.

• Critique: Structure and Frappe are much too slow, and Eigenstrat does not
deliver admixture fractions.

• Our program Admixture is orders of magnitude faster than Structure,
which dominated the field for years.
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SNP: single nucleotide polymorphism (2 alleles per SNP)
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Novembre, John et al (2008) Genes mirror geography within Europe.
Nature 456:98–101
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POPRES Data

1. 1,387 Europeans typed at 197,146 SNPs on an Affymetrix
Genotyping Chip

2. All four grandparents of each subject came from the same region.
3. Tallies from each country appear on the next slide. Counts per county

range from 219 (Italy) to 1 (Denmark, Finland, Latvia, Slovakia, and
Ukraine). Swiss French, German, and Italians are counted separately.
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Nelson MR, et al (2008) The Population Reference Sample (POPRES)
Amer J Hum Genet 83:347–358
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Same Person, Different Admixture
Estimates

Company 1 Companies 1 & 2 Company 3 Companies 3 & 4 Company 5

29.1% British, Irish 67.4% English 51% British 67.3% English 72.8% Scandinavia

18.8% French, German 11% Irish, Scottish, Welsh 30% W Europe 11.4% Irish 23.3 % SW Europe

15.9% Scandinavia 16.9% Italian 8% Irish, Scottish, Welsh 18.4% Italian 3.9% Central Asian

26.0% NW Europe 3.5% Baltic 4% E Europe 2.9% Baltic

3.8% E Europe 1.2% Jewish 4% Scandinavia

2.1% Jewish 1% Jewish

0.5% S Europe 1% Iberian Peninsula

0.3% Balkan < 1% Caucasus

3.7% Europe < 1% S Europe

0.2% Middle East, North Africa
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The Standard Admixture Model

• Unknowns: 1) the number of populations, 2) the fraction wik of 
individual i’s genome attributable to population k, and 3) the
frequency fkj of allele 1 of SNP j in population k.

• In unsupervised learning, both the matrices W = (wik) and F = (fkj)
are unknown. In supervised learning, the underlying populations and
the frequency matrix F are known.

• Model assumptions: random union of gametes (eggs and sperm) and the
independent inheritance of all SNPs. The latter assumption (linkage
equilibrium) is violated for positionally close SNPs.

• Observed data: the observed number yij of copies of allele 1 at SNP j
of person i. Thus, yij equals 0, 1, or 2.

• Distributional assumption: the yij are binomially distributed random
variables with 2 trials and success probability ∑k wikfkj.
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The Likelihood Equations

• The loglikelihood of the data is

This function is maximized in estimating F and W.
• At the maximum point, the following stationarity equations should hold:

• Unfortunately, there is no obvious solution to this system of
equations.
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Hindrances to Numerical Maximization

• Assume I unrelated sample people, J SNPs, and K ancestral populations.
Recall that wik is an ethnic fraction and fkj is an allele frequency.

• The parameter matrices W = {wik} and F = {fkj} have dimensions
• I × K and K × J, for a total of N = IK + KJ parameters. For the modest

choices I = 1000, J = 10, 000, K = 3, there are N = 33, 000 parameters to
estimate.

• The sheer number of parameters makes Newton’s method infeasible. The
storage required for the N × N Hessian matrix is prohibitively large, and
the required matrix inversion is intractable.

• The loglikelihood has at least K ! equivalent global maxima and is subject
to the constraints by 0≤ fkj ≤ 1, wik ≥ 0, and ∑k wik = 1.
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Block Ascent Maximization

• Block ascent maximizes W holding F fixed and then maximizes F
holding W fixed. These two steps are alternated until convergence.

• In the W updates, the admixture proportions for each individual i are
optimized separately. In the F updates, the allele frequencies for each SNP are
optimized separately.

• The block updates are found iteratively by sequential quadratic programming
that maximizes the second-order Taylor’s expansion of L(W, F) around the
current parameter vector. Without constraints sequential quadratic
programming coincides with Newton’s method.

• Block ascent is accelerated by a generic secant method: Zhou H, Alexander
DH, Lange K (2011) Statistics and Computing 21:261-273

• Standard errors are calculated via the parametric bootstrap or by
inverting the expected information matrix when F is known.
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Recent Enhancements to Admixture

• Estimation of the number of underlying populations through
cross-validation.

• Exploitation of individuals of known ancestry from reference
databases.

• Encouragement of admixture parsimony through penalization of 
admixture coefficients. This eliminates low admixture fractions.

• Parallel and GPU processing.
• X chromosome data and sex-specific admixture analysis.
• Use of all SNPs, not just the ”ancestry informative” SNPs. Instead of

10,000 SNPs, use all 1,000,000 SNPs on a chip.
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