

What is AIM Photonics ?

A full service provider and consortium for Integrated Photonics as part of the Manufacturing USA network

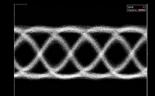
 Enabling Services

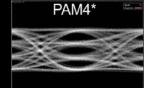
 Applying the infrastructure and technology from the semiconductor industry to cost-reduce photonics

The Foundry behind AIM: Wafer Fab

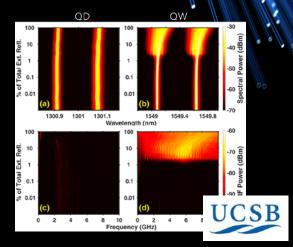
24/7 Pilot Line for Development and EUH production

- 1.3M ft² facility
- 135k ft² of class 1 capable cleanroom
- Cutting edge 300mm toolset
- Total investment > \$10B
- Proven processing capability spans 65nm 5nm CMOS



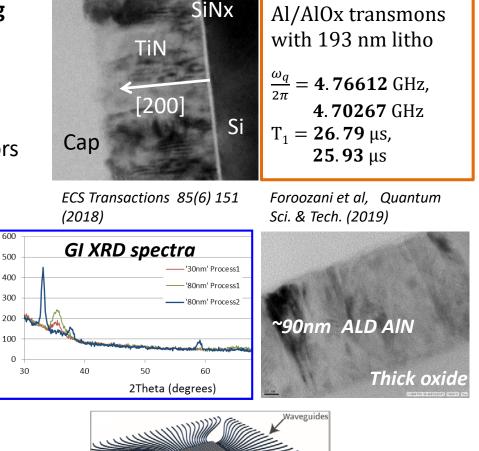

AIM Technology Access

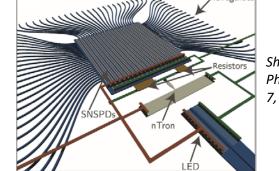
Quantum Dot Lasers


- ✓ Less sensitivity to defects
- ✓ Enables amplification
- ✓ Reduces need for isolators
- ✓ Thermal stability
- ✓ Integration cost advantage
- ✓ Significant reliability progress
- Low-loss Waveguides
 - ✓ <0.25 db/cm for 220nm silicon
 - ✓ <0.10 db/cm for 220nm SiN
 - \checkmark ~1db/facet edge coupler for both TE and TM
- Design Elements (component library)

PDKv3.0a MZM

Passive Components	Qty	Selected Performance
Waveguides	6	<1dB/cm
Edge Couplers	5	<1.5dB/facet
Vertical Couplers	2	<3dB/coupler
3dB 4-Port Splitters	2	<0.5dB loss
3dB Y-junctions	3	<0.2dB loss
Power Taps (1% & 10%)	3	<0.1dB loss
Layer Transitions	5	<0.1dB loss
Crossing	1	<0.15dB loss, <-50dB Xtalk
Polarization Rotator	1	<0.8dB loss
Polarization Splitter & Rotator	1	<0.8dB PDL, >20dB PER
Waveguide Termination	1	<-50dB reflection
Active Devices	Qty	Selected Performance
C Band Photodetector	1	BW>45GHz, R~1A/W
C+L Band Photodetector	1	BW>35GHz, R~1.1A/W
O Band Photodetector	1	BW>40GHz, R~0.9A/W
C+L Band MZM 25G	1	50Gbps PAM4, 0.9Vcm
C+L Band MZM 50G	1	100Gbps PAM4, 1.2Vcm
O Band MZM	1	50Gbps PAM4, 1.3Vcm
Microring Bandpass Filters	4	0.5nm FWHM, ~26nm FSR
Microdisk Bandpass Switches	4	<3ns switch, >30dB isolation
Microdisk Modulators	5	50Gbps, 1Vpp >4dB ER
Analog Photodetector	1	SFDR>113dB/Hz ^{2/3}
Analog MZM	1	SFDR>100dB/Hz ^{2/3}
Thermo-Optic Phase Shifter	2	<25mW/π
Thermo-Optic Switch	2	<25mW/switch
Variable Optical Attenuator	1	up to 10dB


SUNY POLYTECHNIC


Quantum Tech. Dev. at 300mm scale

- 300mm CMOS fab-friendly superconducting materials, devices and circuits
 - Superconducting qubits
 - Single flux quantum logic
 - Superconducting single photon detectors

Intensity

- High kinetic inductance superinductors
- Development of AIN-based photonic integrated circuits
 - UV-transparent waveguides
 - o electro-optic modulators
 - Quantum signal transduction
- Development of superconducting optoelectronics components
 - Fast, energy-efficient neuromorphic computing
 - 3 year project (AFRL funded)

Shainline et al, Phys. Rev. Appl. 7, 034013 (2017)