Converting human genetic insights into new medicines

Tim Rolph SVP, Program Value Enhancement Pfizer Worldwide R&D

Acknowledgements

David Hepworth Pat Dorr Pam Garzone Tristan Maurer Jeff Chabot

David Price Eric Fauman Neeta Amin

Human genetic insights which drove drug R&D yielding new medicines (excludes cancer & enzyme deficiencies)

Genetic insight	Disease Association	Year Public disclosure	Approval of new medicine & disease indication
PNLIP	Steathorrhea	1964	1999 Obesity
Factor-2	Familial bleeding disorder	1969	2000 Thrombosis
Factor-X	Familial bleeding disorder	1970	2008 Venous Thromboembolism Atrial Fibrillation
GPIIb/IIIa	Glanzmann's Thrombasthenia	1974	1997 Percutaneous Coronary Intervention
АроВ	Hypobetalipoproteinemia	1987	2013 Familial Hypercholesterolemia
CaSR	Familial hypocalciuric hypercalcemia	1993	2004 Hypercalcemia
MTTP	Familial abetalipoproteinemia	1995	2012 Familial Hypercholesterolemia
CCR5	HIV	1996	2007 HIV
Leptin	Childhood Obesity	1997	2014 Leptin-deficient Lipodystrophy
SGLT2	Glucosuria	2002	2013 Type-2 Diabetes
PCSK9	Familial Hypercholesterolemia Atherosclerosis	2003	2015 Hypercholesterolemia
		2006	

'Foundational' path to novel medicine; discover candidate, confirm it will test therapeutic hypothesis in human

1. Design primary screen to detect pheno-copy of genetic variant

The Ideal; Biological knowledge of PCSK9 enabled design of in vitro screen to detect mAb phenocopying PCSK9 LOF

Hu PCSK9 (0.4nM) Binding to Immobilized hu LDLr Extracellular Domain

Frequent Reality; leap(s) of faith required to bridge gap(s) in the path

Does conformational change in CCR5 receptor with high affinity antagonist pheno-copy \triangle 32 CCR5 allele?

Successful leap because of rapid feedback on compounds phenocopying \triangle 32 by reducing HIV replication *ex vivo*

2. Understand exposure – effect relationship by developing secondary screen (in vivo) with high confidence in translation to clinic.

Glucose filtration 180 gm / day

PKPD Model of SGLT2i; predicting clinical Ceff from preclinical PKPD

3. Demonstrate proof of pharmacology during FIH at a well-tolerated dose

SGLT2i Preclinical PK-PD predicts human PK-PD; → clinical proof of pharmacology

4. Demonstrate clinical proof of mechanism; reduce fasting blood glucose

Fasting plasma glucose

Knowledge of Human Biology Enables Quantitative Systems Pharmacology (QSP) Modelling; e.g. PCSK9

Co-regulated synthesis

All parameters informed from literature values/data for human Incorporates knowledge of statin (standard of care) effects

PCSK9 QSP Model Output

Monotherapy (goal: 30% LDL-C reduction)

Combination with 80 mg atorvastatin (goal: additional 50% LDL-C reduction)

Clear Synergy Expected in Combination with Atorvastatin

Genetic variants causal of, or protective against human disease, but inadequately understood biological consequences to enable drug discovery

Genetic Locus	Variant(s)	Disease	Date causality established
MC4R	4bp insert codon 264 4bp deletion codon 211 both truncated receptor LOF	Obesity	1998
SCN9A Na(v)1.7	I848T, L858H; GOF S459X, I767X, W897X; LOF	Erythermalgia Insensitive to thermal & mechanical stimuli	2004 2006
SLC30A8	R138X 7bpshift a.a. position 34 Both LOF	Type 2 Diabetes	2013
PNPLA3	I148M	Liver Disease	2015

How can development of biological knowledge, including human, around these genes and pathways be expanded rapidly?

