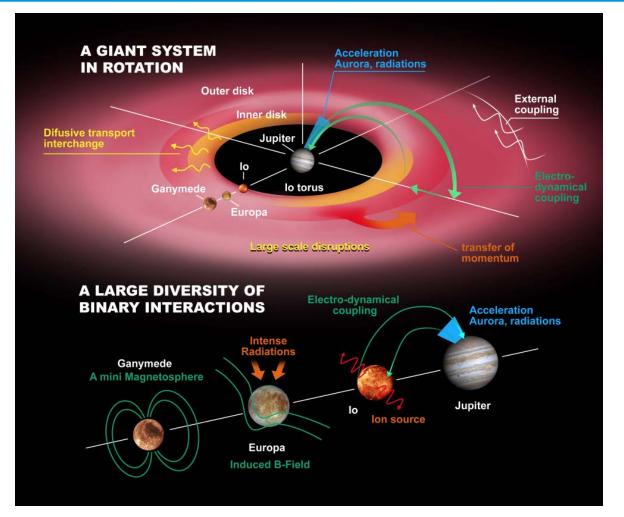


JUICE: Jupiter Icy Moon Explorer

Presentation to the Giant Planet Systems Panel of the National Academies Planetary Science and Astrobiology Decadal Survey

26 March 2021

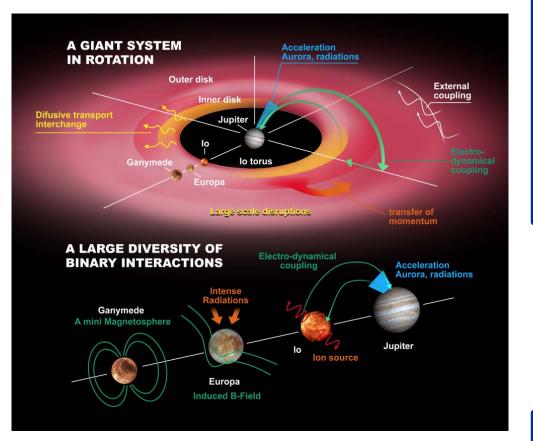
Olivier Witasse, project scientist European Space Agency



JUICE science themes

Emergence of habitable worlds around gas giants

- Ganymede as a planetary object and possible habitat
- Europas's recently active zones
- Callisto as a remnant of the early jovian system

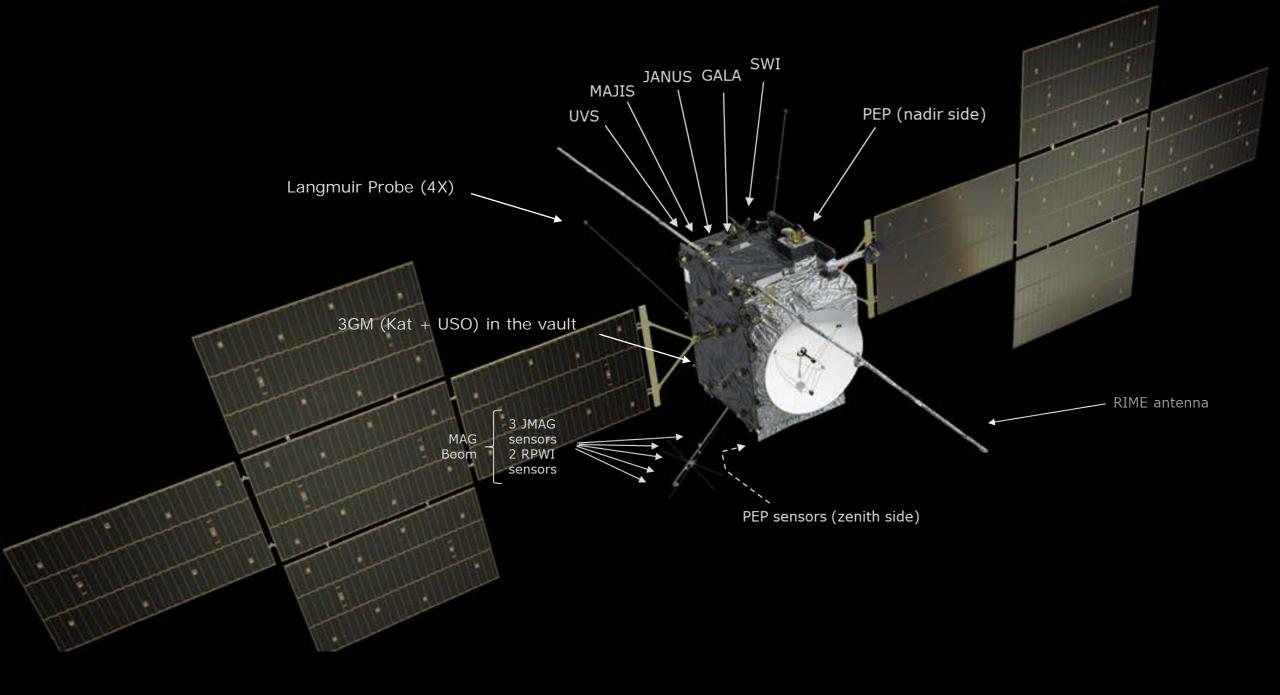

The Jupiter system as an archetype for gas giants

- Jovian atmosphere
- Jovian magnetosphere
- Jovian satellite and ring systems

European Space Agency

Broad and interdisciplinary science

Science objectives



Explore the habitable zone: Ganymede, Europa, and Callisto		
Ganymede as a planetary object and possible habitat	Characterise the extent of the ocean and its relation to the deeper interior	
	Characterise the ice shell	
	Determine global composition, distribution and evolution of surface materials	
	Understand the formation of surface features and search for past and present activity	
	Characterise the local environment and its interaction with the Jovian magnetosphere	
Europa's recently active zones	Determine the composition of the non-ice material, especially as related to habitability	
	Search for liquid water under the most active sites	
	Study the recently active processes	
Callisto as a remnant of the early Jovian system	Characterise the outer shells, including the ocean	
	Determine the composition of the non-ice material	
	Study the past activity	
Explore the Jupiter system as an archetype for gas giants		
The Jovian atmosphere	Characterise the atmospheric dynamics and circulation	
	Characterise the atmospheric composition and chemistry	
	Characterise the atmospheric vertical structure	
The Jovian magnetosphere	Characterise the magnetosphere as a fast magnetic rotator	
	Characterise the magnetosphere as a giant accelerator	
	Understand the moons as sources and sinks of magnetospheric plasma	
The Jovian satellite and ring systems	Study Io's activity and surface composition	
	Study the main characteristics of rings and small satellites	

Mission parameters

- > Launch: 2022-2023
- > Arrival: 2030-2032
- End of mission: 2034-2036
- Impact on Ganymede at the end
- > 59-68 orbits around Jupiter
- > 9 months in orbits around Ganymede 500 km circular orbit at the end.
- 2 Europa flybys 400 km altitude
- > 11-15 Ganymede flybys (various altitudes at closest approach)
- 12-21 Callisto flybys 200 km altitude

The payload (1)

JANUS: Visible Camera System

PI: Pasquale Palumbo, Parthenope University, Italy. Co-PI: Ralf Jaumann, DLR, Germany

- ≥7.5m/pixel
- Multiband imaging, 380 1080 nm
- Icy moon geology
- Io activity monitoring and other moons observations
- Jovian atmosphere dynamics

MAJIS: Imaging VIS-NIR/IR Spectrograph

PI: Yves Langevin, IAS, France Co-PI: Guiseppe Piccioni, INAF, Italy

- 0.9-1.9 μm and 1.5-5.7 μm
- ≥62.5 m/pixel
- Surface composition
- Jovian atmosphere

UVS: UV Imaging Spectrograph

PI: Randy Gladstone, SwRI, USA

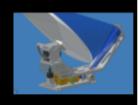
- 55-210 nm
- 0.04°-0.16°
- Aurora and Airglow
- Surface albedos
- Stellar and Solar Occultation

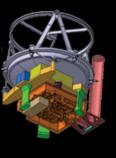
SWI: Sub-mm Wave Instrument

PI: Paul Hartogh, MPS, Germany

- 600 GHz / 1200 GHz
- Jovian Stratosphere
- Moon atmosphere

Atmospheric isotopes

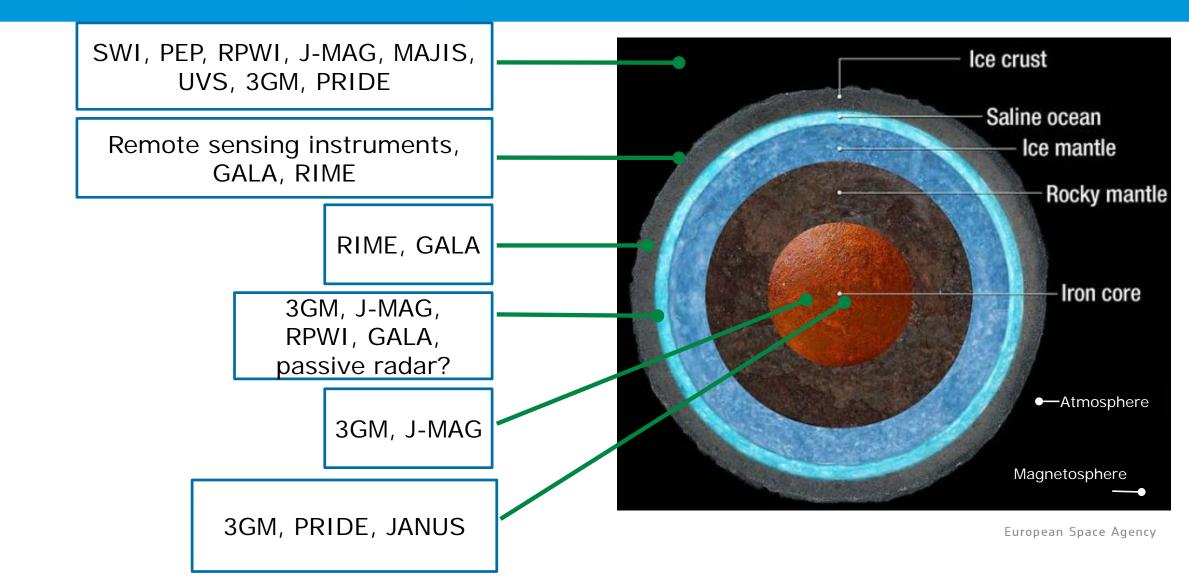

GALA: Laser Altimeter

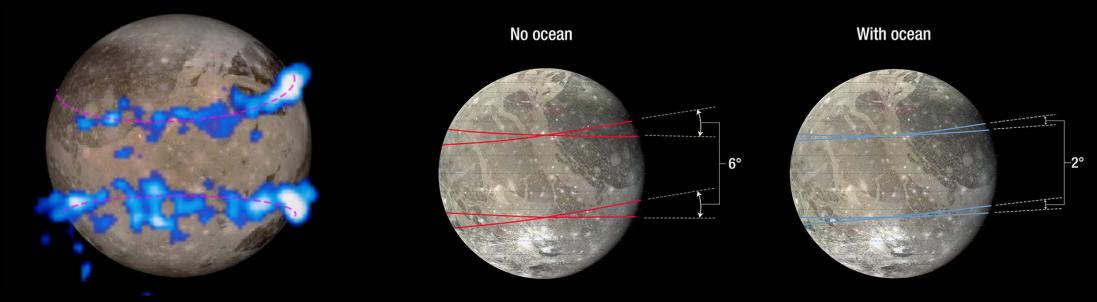

- PI: Hauke Hussmann, DLR, Germany
- ≥40 m spot size
- ≥0.1 m accuracy
- Shape and rotational state
- Tidal deformation
- Slopes, roughness, albedo

RIME: Ice Penetrating Radar

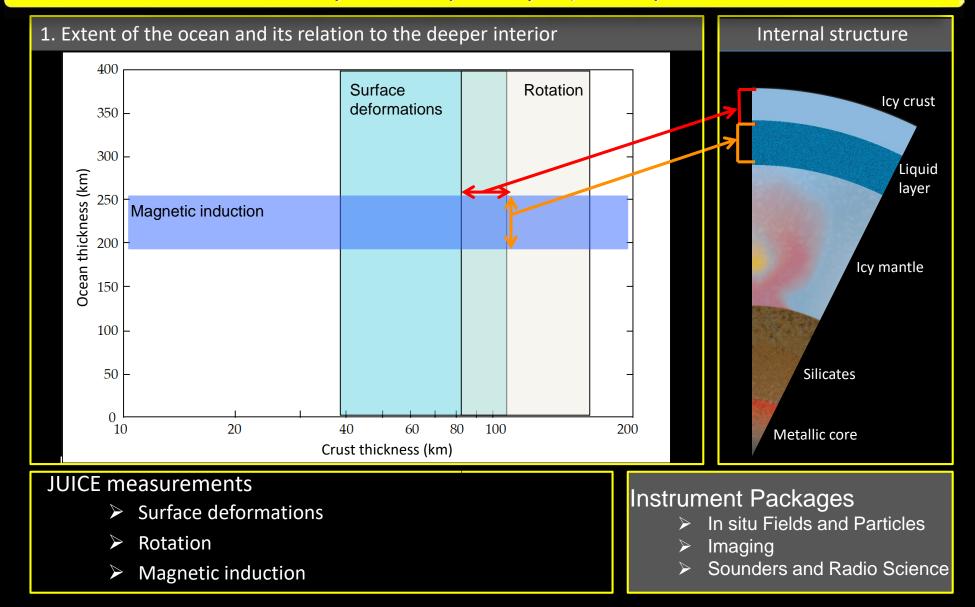
PI: Lorenzo Bruzzone, Trento, Italy Co-PI: Jeff Plaut, JPL, USA

- 9 MHz
- Penetration ~9 km
- Vertical resolution 50 m
- Subsurface investigations


The payload (2)


JMAG: JUICE Magnetometer PI: Michele Dougherty, Imperial, UK Dual Fluxgate and Scalar mag ±8000 nT range, 0.2 nT accuracy Moon interior through induction Dynamical plasma processes 	 3GM: Gravity, Geophysics, Galilean Moons Pl: Luciano less, Rome, Italy Co-Pl: David J. Stevenson, CalTech, USA Ranging by radio tracking 2 μm/s range rate 20 cm range accuracy Gravity fields and tidal deformation Ephemerides Bi-static and radio occultation experiments
 PEP: Particle Environment Package PI: Stas Barabash, IRF-K, Sweden Co-PI: Peter Wurz, UBe, Switzerland Six sensor suite Ions, electrons, neutral gas (in-situ) Remote ENA imaging of plasma and torus 	 PRIDE: Planetary Radio Interferometer & Doppler Experiment PI: Leonid Gurvits, JIVE, EU/The Netherlands S/C state vector Ephemerides Bi-static and radio occultation experiments
RPWI: Radio and Plasma Wave Investigation PI: Jan-Erik Wahlund, IRF-U, Sweden • Langmuir Probes • Search Coil Magnetometer • Tri-axial dipole antenna • E and B-fields • Ion, electron and charged dust parameters	

Broad science and interdisciplinary


Plasma physics (auroras) and interior science (magnetic field + ocean)

Ganymede Auroral Band Oscillation

- Auroras and plasma environment observed by remote-sensing and in-situ instruments
- Information on interior from geophysics package and field instruments

Characterise Ganymede as a planetary object and possible habitat

Spacecraft flight model

ppean Space Agency