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Emerging Clinical Trials Designs in Precision Nutrition and Medicine
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Alternatives to prospective RCTs? Mediation analysis (e.g., Mendelian Randomization); General causal analysis (especially longitudinal data);
Non-randomized trials; Matching via propensity scores and analysis; Triangulation and ‘evidence synthesis’ of disparate study type data



NASEM Virtual Stakeholders Meeting: 03/29/21

Emerging Clinical Trials Designs in Precision Nutrition and Medicine

Similarity of individuals based on measures associated with a phenotype
(e.g., microbiome and nutritional deficiencies)

__________________________________________________________________ Traditional Nutrition/Medicine Standard RCT
-I (‘One Size Fits All')
____________________________________________________________________ Stratified Nutrition/Medicine Multi-arm trial
(Few Biomarkers; e.g., Sex, Ancestry) Bucket/umbrella trials

. Precision Nutrition/Medicine Béorrllarker—gbwd“ed tt.'IE:|S
(Many Biomarkers; e.g., SNP Profile) . ue .et/um re‘ atrials )
Trials vetting matching strategies

Individualized or Personalized N-of-1 and aggregated N-of-1 trials
Nutrition/Medicine Adaptive individual policy trials
(Everyone is Unique) Trials vetting matching strategies

* Need better biomarkers to identify subgroups and ways of vetting those biomarkers Therapeutic Drug Monitoring Studies

* Need better ways of monitoring response, including surrogate and meaningful intermediate endpoints « Leverage indicators of activity
* Need to understand how similarity can be defined? assays may capture one aspect relevant similarity + Leverage surrogate endpoint
* Need to appreciate trait (e.g., genetic)/state (e.g., metabolome) dichotomy in assessing categories * Better monitoring (e.g., wireless)

Schork NJ, Goetz LH, Lowey J, Trent J.Clin Pharmacol Ther. 2020 Sep;108(3):542-552..PMID: 32535886



Statistical Rapid Learning Systems (RLS): Building-up In5|ghts in Real Time
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A Rapid-Learning Health
System

What would a rapid-learning health system look like, and how might
we get there?

by Lynn M. Etheredge

Note: need a mechanism to collect data and a large database to house, query, and analyze them
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New predictor and expanded prediction model
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J Clin Oncol 34:756-763. © 2016
Building a Rapid Learning Health Care System for Oncology:
Why CancerLinQ Collects Identifiable Health Information to

Achieve Its Vision
Alaap Shah, Andrew K. Stewart, Andrej Kolacevski, Dina Michels, and Robert Miller
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Rapid learning for precision oncology

Jeff Shrager and Jay M. Tenenbaum
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ONLINE RULES FOR CONTROL OF FALSE DISCOVERY RATE
AND FALSE DISCOVERY EXCEEDANCE
BY ADEL JAVANMARD! AND ANDREA MONTANARI®
University of Southern California and Stanford University
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1. Introduction. The common practice in claiming a scientific discovery is
to support such claim with a p-value as a measure of statistical significance. Hy-
potheses with p-values below a significance level a. typically 0.05. are considered
1o be statistically significant. While this ritual controls type I errors for single test-
ing problems, in case of testing multiple hypotheses it leads to a large number

621.99.
ate (FDR), false discovery ex




Matching Individual Profiles to a Particular Diet or Medicine(s)

Table 1 Cancer interventions that assume strategies for matching interventions to patient characteristics

Technology/strategy Example reference Description

}6 =]

Tumor perturbation rules Simon and Roychowdhury (2013 Rules for choosing specific Rx based on patient profile

Combination drug rules Lazar et al. (2015)™° Rules to pick out = 1 Rx based on patient profile

Connectivity map Lamb et al. (2008)® Choose drugs “reversing” disease GEx signature

Metwork analysis Barabasi et al. [2{&11}“ Find best drug targets from interaction maps

Sequential administration Koopman et al. (2011)" Provide drugs in sequence (via biomarkers?)

Multitarget therapies Galloway et al. (2015)" Single compounds known to hit = 1 targst
Immunotherapeutics Kreiter et al. (2015)° Meo-antigen targeting via cytotoxic T cell therapy
RMAI/Antisense therapies Haussecker et al. (2015)™ Repress GEx via constructs that bind to DNA

In Vivo tumaor implants Jonas et al. (2015)"® Test drug effects on tumaor in vivo

Tumorgraft models Stebbing et al. (2014)™® Test drug effects on tumor engrafted mice

In Vitro/Ex Vivo assays Crystal et al. [2014}” Test tumor drug sensitivity in vitro

Engineered cell replacement Golchin and Farahany (2019)™8 Modify patient-unique defects in replacement cells

Dosing via biomarkers Schuck et al. (2016)™ Set treatment dose per (e.g., patient genotype)

Delivery schedule via biomarkers Innominato et al. (2014)%° Time of drug administration is based on diurnal pattemns

Physician intuition - Decisions based on physician training and experience

Physician-assisted choice - Decision support by external data and publications

GEx, Gene expression signature; Rx, prescription.

Schork NJ, Goetz LH, Lowey J, Trent J.Clin Pharmacol Ther. 2020 Sep;108(3):542-552. dPMID: 32535886

Important Points:
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Personalized Nutrition by Prediction of Glycemic

Responses

Graphical Abstract
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In Brief

People eating identical meals present
high variability in post-meal blood
glucose response. Personalized diets

Qi H-E created with the help of an accurate
/ predictor of blood gl that
@\ N integi such as dietary
Anthi t
S ‘% Bredictor habits, physical activity, and gut
i iota may lower post-

Food diary

%@

Pitd
Design personalized diet
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Highlights

e High interp: variability in post: | glucose observed
in an 800-person cohort

e Using p and mi i enables

glucose response prediction

Prediction is accurate and superior to common practice inan
independent cohort

Short-term p:
lower post-meal glucose

dietary inter

Zeevi et al., 2015, Cell 163, 1079-1094
@ cosMark November 19, 2015 ©2015 Elsevier Inc.
http://dx.doi.org/10.1016/j.cell.2015.11.001

meal blood glucose and its long-term
metabolic consequences.

Cell

The algorithms themselves need vetting (diets determined by algorithms vs. those determined by something else?)
Should one compare two (or more) algorithms in the way, e.g., Lipitor and Simvastain, have been compared?

Could one use N-of-1 trials on exploring patient responses to an algorithm-determined diet and then aggregate results?



Measurement (e.g., Blood Pressure)

Equipoise, Personalized Nutrition/Medicine and ‘N-of-1’ Clinical Trials

Basic Goal: Make objective claims about the utility of an intervention for an individual (note: most trials focus on
population effects and likely do not collect enough data to identify unequivocal responders vs. non-responders)

Many familiar statistical strategies
can be used in their design to
achieve greater scientific rigor:

e Randomization

e Blinding

* Multiple crossovers

* Washout periods

* Accommodating covariates

* Multivariate analyses

e Aggregation and meta-analyses

USA FDA Organized Meeting, ASCPT 2012

Positively Correlated Phenotype
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