NASEM Webinar: Health Outcomes Associated with Nutrient Intake and Contaminant Exposure in Fish and Seafood

Impact of Nutrients and Contaminants in Human Milk on Growth and Development

Christine D. Garner, PhD, RD

Assistant VP of Research, Assistant Professor Texas Tech University Health Sciences Center Department of Pediatrics, InfantRisk Center

Breastfeeding Recommendations

<u>Exclusive</u> breastfeeding for about <u>6 months</u>, with appropriate complementary foods introduced at about 6 months and continued breastfeeding as long as mutually desired by mother and child <u>for 2 years or</u> <u>beyond.</u>

- If 90% of infants fed according to recommendations:
- •Reduce maternal deaths
- •Reduce infant deaths
- •Reduce medical costs by \$3 billion per year

Meek JY, Noble L, Section on Breastfeeding. *Pediatrics*. 2022;150(1). Bartick M et al. *Matern Child Nutr*. 2017 ;13(1):e12366.

Any and Exclusive Breastfeeding in the US: Children Born in 2019

Age of Baby (months)

Breastfeeding Report Card, United States 2022. CDC.

Transfer of substances to fetus/infant

Factors affecting HM content and transfer to infant

Environment	Mother	Milk			Infant	
Contaminants	Diet – past & current Body composition Weight loss Parity		Nutrient conc. Contaminant conc. Volume		Birth weight	
(timing, duration,					Growth	
and level)					Development	
_					Breastfeeding	
Access to fish/seafood					behavior	
nsny searoou	Contaminant		Frequency		Breastfeeding	
	burden Ma	amma		ant	GI duration	
	4	gland		ract		

Mechanisms of entry into human milk

Hale & Hartmann's Textbook of Human Lactation. 2007.

Sources:

- Synthesized in lactocyte
- Transferred from maternal blood

Mechanisms:

- Paracellular diffusion especially colostrum
- Passive transcellular diffusion
- Lipid droplets
- Secretory vesicles / exosomes

Affected by:

- Concentration in blood
- Characteristics of compound
 - Half-life
 - Molecular weight
 - Protein-binding

Macronutrient variability in human milk

Macronutrient	Proportion of energy in HM	Affected by Maternal Status	Affected by Maternal Diet	Comments
Carbohydrates Lactose Oligosaccharides	~40-45%	No No No	No No No	Lowest in colostrum Highest in colostrum
Proteins Amino acids	~6%	No No	No Yes	Total concentrations similar in well- and undernourished
Fat/Lipids Polyunsaturated FAs Saturated FAs Monounsaturated FAs Cholesterol	~50-55%	Yes Yes Some Some No	Affects type Yes Some Some No	Most variable macronutrient Type of FAs affected by maternal diet and BMI

Fats are also where contaminants are stored

Dror & Allen. 2018. Adv Nutr.

Docosahexanoic acid (DHA)

DHA crucial during lactation and infancy

- DHA deposited in brain from late gestation through 1st year
 - Neuronal membrane flexibility
 - Neuronal transmission
 - Neurogenesis and neuronal growth
 - Retina development

Recommendation:

• Dietary Guidelines for Americans recommend lactating women consume 8 and 12 oz of fish per week (low mercury types)

Meldrum S and Simmer K. Ann Nutr Metab 2016;69(suppl 1):23-28.; Dietary Guidelines for Americans, 2020-2025.

Seafood and fish intake low among pregnant and lactating women in U.S.

Recommended Intake Ranges

Average Intakes

Dietary Guidelines for Americans, 2020-2025.

DHA in human milk worldwide

- 78 studies, 3746 individuals, 4163 HM samples
- Mean DHA 0.37 (SD 0.11) % of total fatty acids
- North America region lowest DHA concentrations

Breast milk DHA by access to marine foods

DHA concentrations in HM by access to marine foods

marine access no marine access

Fu Y, et al. Public Health Nutr 2016;19(15):2675-87.

DHA concentration of human milk

- Fatty acid content of HM variable with diet
- Habitual intake vs current intake
- DHA in HM reported as % total fatty acids
- Total amount of fat in milk varies substantially
- Amount DHA infant receives from HM unclear
- Infant formulas: 0.2% to 0.96% fatty acids as DHA (no beneficial effects or harms of DHA in infant formula)

NASEM. Scanning for New Evidence on Nutrient Content of Human Milk. https://doi.org/10.17226/25943. Bzikowska-Jura A, et al. Nutrients 2019;11(7). Jasani B, et al. Cochrane Database Syst Rev. 2017;3(3):Cd000376.

Fish Consumption during Lactation and Infant Growth and Development

Seafood Intake during lactation & infant outcomes

 "All articles assessed maternal seafood intake during pregnancy and <u>no articles assessed seafood exposure during lactation</u>."

• "No evidence is available to determine the relationship between maternal seafood intake during lactation and neurocognitive development in the child. (Grade: Grade not assignable)."

Snetselaar L, et al. Seafood Consumption during Pregnancy and Lactation and Neurocognitive Development in the Child: A Systematic Review. July 2020. U.S. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion, Nutrition Evidence Systematic Review. Available at: https://doi.org/10.52570/NESR.DGAC2020.SR0502

Contaminants in Human Milk

Mercury PFAS POPs

Mercury in human milk worldwide

Total mercury concentrations in human milk

HM Hg levels by exposure type

Dietary

4

2

0

Background

Breast milk (All data, categorized according to exposure type)

Dental amalgam

Occupational

Sharma et al. *Environ Int* 2019;125:300-19.

Mercury in human milk – infant development

- No association detected between mercury exposure through human milk and cognitive outcomes in infants
- Italian cohort study
 - n=606 children and their mothers
 - Exposures: Hg in maternal hair, cord blood, breast milk; Fish intake measured by food frequency questionnaire, assessment of 22 fish species
 - Outcome: Bayley Scales of Infant and Toddler Development-III at 18 mo
 - No associations between HM mercury level and infant development
 - No associations between fish intake and development
 - No report of BF exclusivity or duration

Valent et al. J Epidemiol 2013;23(5):360-370. Sharma et al. *Environ Int* 2019;125:300-19.

Mercury in human milk – oxidative stress

- HM mercury associated with increased oxidative stress biomarkers
- Urinary oxidative stress biomarkers (n=155 mothers + infants, Saudi Arabia)
 - HM mercury associated with infant urinary malondialdehyde
- Biomarkers in HM (n=108, Mexico)
 - HM [Se], [Hg], and fish/shellfish intake all correlated with GST activity
 - No infant data collected

Al-Saleh I, et al. Biol Trace Elem Res. 2013;153:145-154.

Sharma et al. *Environ Int.* 2019;125:300-19. Al-Saleh I, et al. *Biol Trace Elem Res.* 2013;153:145-154. Gaxiola-Robles R, et al. *Nutr Hosp.* 2014;30(2):436-46.

Contaminants in Human Milk Perfluoroalkyl substances (PFAS)

Plasma and human milk PFAS correlated

- N=294, New Hampshire Birth Cohort
- Maternal plasma 28wk gest
- HM collected at 6 wk postpartum
- Maternal plasma-to-milk ratio
 - 0.02 PFOA
 - 0.01 PFOS
- No data on intake/maternal exposure source

Spearman correlation of PFOA and PFOS between maternal plasma and milk. (n=294)

Criswell RL, et al. Environ Sci Technol 2023;57:463-472.

Fish as source of PFAS in human milk

Multivariable determinants of "colostrum" PFOS and PFOA

- N=184, birth cohort in Eastern Slovakia
- "Colostrum" samples day 4 or 5 postpartum
- Food frequency questionnaire (96-item) during delivery hospitalization – calculated quantity (g/d) of foods consumed
- Fresh/frozen fish consumption strongest predictor

Determinant	PFOS % change (pg/mL)	<i>P</i> -value	PFOA % change (pg/mL)	<i>P</i> -value
Parous	-39.8	0.002	-40.4	-40.4
Birth interval >18mo	39.4	0.04	41.6	41.6
Fresh/frozen fish consumption (per 50g/d)	100.6	0.001	54.9	54.9
Birthweight (per 100g)	-2.3	0.02		
Fresh fruit/veg (100 g/d)	-4.7	0.02		

Jusko TA, et al. Environ Sci Technol 2016;50(13):7152-7162.

Contaminants in Human Milk Persistent Organic Pollutants (POPs)

Fish intake and POPs in HM

- N=206, primiparous mothers in Belgium
- HM samples 3 to 8 weeks postpartum
- Diet assessed by "structured questionnaire"
- Maternal age and BMI associated with higher POPs
- Fatty fish major determinant of HM POP concentration
- Mother's receipt of HM as infant determinant of HM POP concentration

Contaminant burden from infancy resulted in higher contaminants in own breast milk

Aerts R, et al. Environ Int 2019;131:104979.

Maternal weight loss impacts POPs in HM

- N=32, Postpartum weight loss trial in Sweden (LEVA)
- Baseline 12 wk, follow-up 24 wk
- Milk samples analyzed for POPs
- Infant HM intake estimated
- POPs in HM increased 2-2.4% per percent maternal weight loss
- Absolute intake remained stable
- Intake per kg body weight decreased 17-22%

Weight loss and percent change in POP concentration in HM

Lignell S, et al. Chemosphere 2016;159:96-102.

Maternal weight loss impacts POPs in HM

	Substance	n	Change in concentration from ~12wk to ~24wk (ng/g lipid)	<i>P</i> -value			
	Women who lost weight						
Increased	PCB 28	26	0.05 ± 0.16	0.168			
	PCB 153	27	3.2 ± 6.9	0.043			
	НСВ	26	0.72 ± 1.1	0.117			
	DDE	27	7.8 ± 20	0.057			
	Women who did not lose weight						
Decreased	PCB 28	5	-0.11 ± 0.10	0.060			
	PCB 153	5	-2.8 ± 2.5	0.066			
	НСВ	5	-1.1 ± 0.93	0.056			
	DDE	5	-7.5 ± 5.7	0.025			

Lignell S, et al. Chemosphere 2016;159:96-102.

Impact of Contaminants in HM on development and growth **NO DATA**

Contaminants affect lactation

- Epidemiologic evidence:
 - PFAS associated with shorter breastfeeding duration
 - DDT associated with shorter breastfeeding duration
 - PCBs mixed evidence
 - Phthalates mixed evidence
- Animal studies:
 - PFOA: impaired mammary gland development, altered milk protein gene expression
 - BPA: accelerated mammary gland development, reduced protein synthesis and milk yield

White SS, et al. *Toxicol Sci.* 2007;96(1):133-44.

Infant Formula exposure to contaminants

Screening for PFAS and POPs not required

Dabeka RW, McKenzie AD. Food Addit Contam Part B Surveill. 2012;5(1):65-9.

Human milk composition and contaminants

Summarizing the research

Research Gaps

- Infant outcomes frequently not collected
- Limited data on nutrients other than DHA from fish/seafood in HM
- Design
 - <u>Single</u> HM sample typically collected / analyzed
 - Lack measurements of maternal plasma, HM, and infant plasma
 - <u>Few</u> longitudinal designs
- Execution
 - Maternal diet frequently not reported or adequately reported
 - HM concentrations reported with <u>no context</u> of volume consumed, or duration of breastfeeding
- Populations studied
 - Few studies in U.S. or Canada

Conclusions

- Both concentration <u>and</u> volume of HM <u>needed</u> to estimate exposure
- DHA in human milk clearly <u>linked</u> to fish/seafood consumption
- Lack data on other nutrients from fish/seafood in HM
- Most contaminants not assessed in diet
- Contaminants may negatively affect ability to breastfeed
- <u>Lack</u> data on infant outcomes from exposure through HM
- Consuming no fish does not eliminate contaminant risk
- Substantial risks associated with not breastfeeding

Thank you!

