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Brief History of REMEDY

» Part of larger investigation into non-CO, GHG abatement

> “Preventing or Abating Anthropogenic Methane Emissions”
— Gas-fired engines
— Flares (presumptive 98% methane destruction)
— Wells and mines
— Landfills
— Enteric (ruminants)
— Direct removal from air

> 10/20/2020 Workshop/links to presentations

https://arpa-e.energy.gov/events/preventing-abating-anthropogenic-methane-
emissions-workshop
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https://arpa-e.energy.gov/events/preventing-abating-anthropogenic-methane-emissions-workshop
https://arpa-e.energy.gov/events/preventing-abating-anthropogenic-methane-emissions-workshop

REMEDY: Engines, Flares, Coal Mines

» 3 yr, $35MM program, diverse technologies/teams, systems approac

> Point source emissions
—~250 coal mine ventilation shafts
—50,000+ natural gas-fired engines m o1l and gas and CHP/electric generation

—300,000 flares for o1l and gas ‘“routine” operations — not flares “temporarily”
burning associated gas

> Ensure 99.5% methane reacted to CO,; field tests in year 3

Program update https://arpa-e.energy.gov/2023-repair-annual-meeting
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https://arpa-e.energy.gov/2023-repair-annual-meeting

Awardees

Coal Mine VAMCatalysts)

Johnson Matthey, Inc. $4.3MM

Massachusetts Institute of Technology $3.7MM
Precision Combustion, Inc. $3.7MM

Natural Gas Engineg§Engine modifications, catalysts, plasmaenhanced combustion)
MAHLE Powertrain $3.3MM

Colorado State University $1.5MM

Marquette University $4.0MM

INNIO’s Waukesha Gas Engines$2.2MM

Texas A&M University $2.8MM

Flares (Advanced burners, integrated heat exchange, catalysts, plasm@nhancedcombusiton
Advanced Cooling Technologies, Inc.$3.3MM

Cimarron Energy, Inc.$1MM

University of Michigan $2.9MM

University of Minnesota $2.1MM
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Observations re: methane removal from air

» Need to treat a lot of air
— Need passive system,and/or leverage existing assets moving air

\4

Reacting dilute methane
— Mimic nature’s strategies
* Atmospheric chemistry (free radical chain reactions)
* Biology (subsurface, soil,atmospheric suspensions)
— Catalysts need a lot of heat (>300 C)
* Leverage waste heat/thermal integration

\4

Destroy,don’t try to capture/recover
— Incremental costs exceeds incremental revenue (10 MM ton =~$1B)

\4

Adsorption/absorption likely ineffective
* Low working capacity (difference in adsorption/desorption isotherms

\4

Do no harm
— Potential co-emissions could be worse than methane
— Keep track of energy and material inputs
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It's a Lot of Air

> An ounce of prevention
IS worth a ton of cure

> Accumulation 10MM
ton/ yr

> Removing 10MM ton @
2 ppm, need to “treat”

6 Pm?3 air/ yr assuming
100% destruction

— 10 m high layer of air
across the globe
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FIGURE S.1 Schematic of sources and sinks of methane globally. SOURCE: Global Carbon Project, http://
www.globalcarbonproject.org/.




Passive and Leveraged Air Contacting

Viable methanotrophic
bacteria enriched from air
and rain can oxidize methane
at cloud-like conditions

Aerobiologia vol 29, pages373—
384 (2013)

» Built infrastructure — lots of area

> *“Forced convection”— cooling towers, HVAC

» (Caves and abandoned mines — “diurnal

breathing” > Turbines — reduced boundary

layers/enhanced mass transfer
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https://link.springer.com/journal/10453

Methane Catalysts: Need cheap, active, robust

» Mixed oxide catalysts such as NiCo,O, are SE | AT
promising cost-effective catalyst candidates for = °F f' }
methane oxidation in the temperature >300 C!. £ o°F  — ;
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! Tao, F., Shan,Jj., Nguyen, L. et al, Nature
Communications 6,7798 (2015).
lznms://doi.org, 10.1038/ncomms8798

> REMEDY’s Precision Combustion Inc.
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https://doi.org/10.1038/ncomms8798

Photo-catalysts — Resetting CQ Targets

Addition of noble or transition metals (Ag, Pd, V, Fe, Ga, Ce,

Co, Cu and Zn) to HPW/TiO2 strongly affects the rate and 4 s00
selectivity of methane oxidation. Much higher activity was e
observed over the catalysts containing noble metals (Fig. 1a), . 400
however, this higher activity was accompanied by significant E 300
carbon dioxide production. Nofe that only CO was detected in f
methane photo-oxidation over the Pd containing catalyst. 2 200
=
S
=
E 100
4
NATURE COMMUNICATIONS | (2019) 10:700 | 0
https://doi.org/10.1038/s41467-019-08525-2 __t{-."
R R
b

Fig. 1 Methane photocatalytic oxidation on different catalysts. a Metal-HPW/TiO2 composite
Reaction conditions: catalyst, 0.1 g; gas phase pressure, CH4 0.3 MPa, Air 0.1 MPa;
irradiation time, 6 h
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Plasma/Hydroxyl/Reactive Accelerators— What's New

» Methane oxidation promoters:

— Hydroxylradicals > oxygen radicals > o0zone
>hydrogen > C2+ hydrocarbons
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Ag. 1.5. Schematic of timescales and key kinetic pathways at different stages of

> Elijah Thimsen (Wash U St. Louis) preliminary plass skt eniion snd combuston
tests, 1 ATM, just below LEL, able to achieve
85%conversion at ~$150/ton. Believes
plasma/catalyst integration required for high
conversion/lower concentrations.
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Combustion Chemistry Implications for Additives

W. 5un, X Gao aond B, W ef al./ Progress in Energy and Combustion Science 73 (2019) [-25 EnC Peterson — Workshop Combustlon Fundamentals
20 . .
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» Fig. 5. Enhancement of CH, /air flame speeds as a function
of O; concentration, where ¢ is the equivalence ratio
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Catalyst and “Accelerant” Issues

— Parasitic energy load
* Electricity, heat

— Environmental
 Potential for NOx, ozone-forming emissions

 Potential for HAPS (ie formaldehyde)
emissions

* Mining, etc, esp for noble metals
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Methanotrophs/ Biofilters — What's New

» Sampling, metabolism, strain isolation, genetic 7+
sequencing g-
— Atmospheric suspensions

* Dispersed methanotrophs are potentially Methano-
large methane sink trophs in

— Vietnamese cave biofilm cloud

* Removes 150,000 mt/yr methane; coal condition
mine analog?

Methane conc. [ppm]

Time [day]
— Soils y
* Isolated and characterized strain that
grows on 2 ppm methane, role of pMMO 0025 .

— Coal bed methane
* USGS site, likely methanotroph biofilm
— Subsurface

* South African study correlates
methanotrophs activity with reducing
equivalents m saline formation at 1340m
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Methanotroph/ Biofilters — What’s New

70

» System developments

60 -

— Russian tests mjecting
methanotrophs into coalseams
reduced methane emissions >50%
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20 ---@-- Bio-filter with AC
— Mixed marine sediment consortia o o Boer TS
on plastic balls m packed bed o
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— LLNL Time (hours)

* “Printed tunable living mk” ch{ov}oiﬂ*z
biofilter has 10X productivity gain | =~ o "

ive microbes  nanocellulose

* Plastic encapsulation allow
dispersion and protection from
native environment
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Summary

» Many potential routes

> Good scientific base for methane oxidation mechnisms

— But few studies to apply science for methane removal from air in novel
> Look for out-of-the-box integration/deployment

> Be mindful of potential unintended consequences
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