

Workshop on Indoor Exposure to Fine Particulate Matter and Practical Mitigation Approaches

The Utility, Use, and Misuse of Low-Cost Consumer Indoor Particulate Matter Sensors

April 21, 2021

Human-Oriented Built Environment Lab Website: hobel.epfl.ch Twitter: @licinadusan

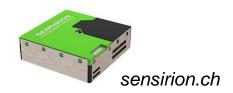
Asst. Prof. Dusan Licina, Ph.D. School of Architecture, Civil and Environmental Engineering École polytechnique fédérale de Lausanne <u>dusan.licina@epfl.ch</u>

A few (important) caveats on low-cost sensing of indoor PM

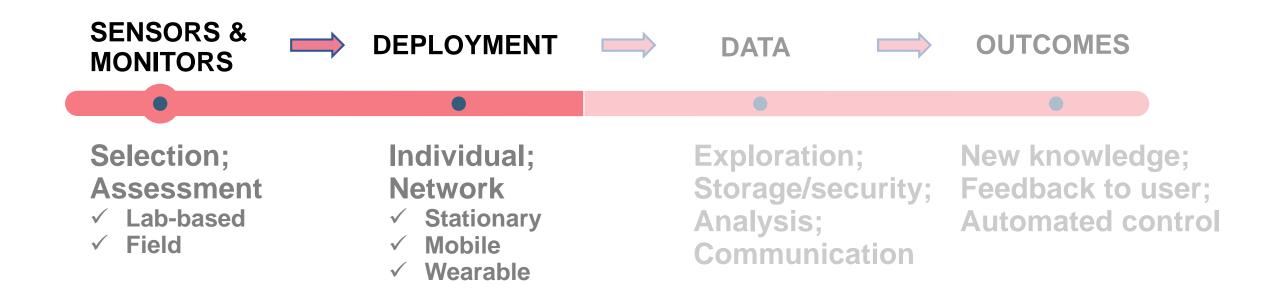
- Recent & rapidly growing field (majority of papers dates from the past 5 years)
- More research available for low cost sensors for outdoor PM monitoring
- PM monitoring networks primarily established for outdoors

www.purpleair.com

Snapshot of $PM_{2.5}$ concentration in the US ($\mu g/m^3$)


Workshop on Indoor Exposure to Fine Particulate Matter and Practical Mitigation Approaches Dusan Licina I <u>dusan.licina@epfl.ch</u>

Definitions


- Reference instrument: associated with a reference method (FRM, FEM), but can also be a "lab-grade" instrument
- **Monitor**: an integrated device that comprises at least sensor other supporting components needed to create a fully functional air quality data collection system
- Sensor: sub-component of a monitor that detects particles
- Low vs. high cost:
 - High-cost, lab-grade: typical range 3'000-50'000 USD
 - Low-cost monitor: typical range 100-500 USD (median ~200 USD)
 - Low-cost PM sensor: typical range 1-100 USD

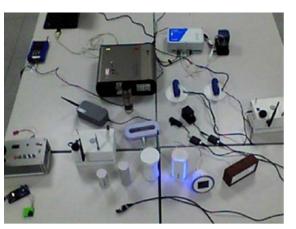
Framework for the utilization of low-cost indoor PM sensors

Assessment of low-cost PM sensors and monitors

- About 10% of studies made reference to published protocols
 - Researchers typically adopt their own protocol for assessment of sensors and monitors
 - Variable judgement criteria for "good enough"

Morawska et al. 2018 Environ Int 118: 286-299

- Methods differ in:
 - Duration of testing (short >> long)
 - Measurement environments (lab >> field)
 - Number of replicate technologies
 - Reference method utilized


Studies	Foobot/Reference	
Moreno-R. et al. 2018, JSSS	1.23 -1.43	
Demanega et al. 2021, BAE	0.57	ģ
Singer and Delp, 2018, Indoor Air	0.53 - 0.63	@foo

Typical performance indicators:

- Comparison with reference measurements
- Repeatability & reproducibility
- Limit of detection (LOD)
- Dependence on particle size and composition
- Dependence on indoor climate

Comparison with reference measurements

- Generally high degree of correlation with reference measurements: $R^2 > 0.5$
- In the lab, low-cost PM sensors typically perform much better (R² > 0.8)
 - Lab: sensors report time-averaged concentration within 50-200% from the reference (for PM_{2.5})
 - Field: sensors suffer significant response factor changes

Demanega et al. 2021, BAE 107415

Lab vs field:

- Lab: Difficult to maintain a low PM concentration during long time
- Lab: Composition and concentration of the test aerosol may not be representative of aerosols in the study area
- Field: Changing particle composition, size and environmental factors

fitnews.com

Repeatability and reproducibility

- For majority of sensor manufacturers, generally high intra-model consistency
 - R² typically above 0.8
 - But... typically tested in the lab

Mukherjee et al. 2017 Sensors, 17: 1805 Zou et al. 2020 STBE, 26: 237-249

- Could be influenced by the PM concentration range, source type, "drift", etc:
 - E.g. reproducibility for cigarette smoke is higher compared to Arizona Test Dust
 - E.g. risk of accumulation of larger particles in the sensing zone (sensor drift)
 - E.g. PM organic > PM inorganic, at identical concentrations

Limit of detection (LOD)

- Sensor performance could be compromised at low concentrations
 - Problematic below 10 µg/m³

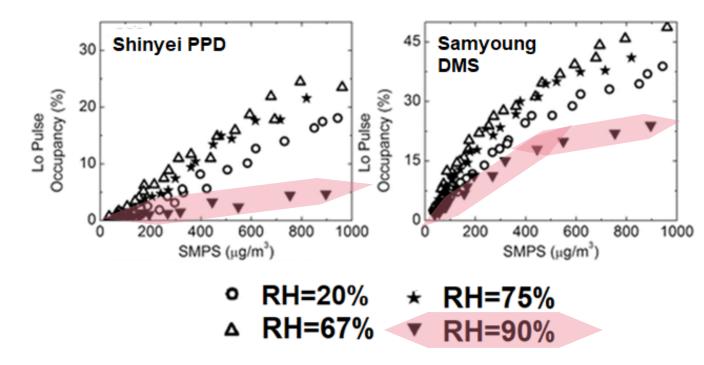
Holstius et al., 2014 AMS, 7: 1121-1131 Jovašević-Stojanović et al., 2015, Environ Pollut 206: 696-704 Kumar et al., 2015 Environ Int, 75: 199-205

Coefficient of Determination (R²): Low-cost PM_{2.5} vs. Reference

PM _{2.5} mass	< 20 μg/m ³	>20 µg/m ³	
Sharp	0.13	0.99	
Shinyei	0.35	0.86	
Plantower	1.00	1.00	
Innociple	0.96	0.97	
Nova SDS011	0.95	0.99	
Nova SDL607	0.99	1.00	

Need for calibrating sensors individually for each environment of their intended use

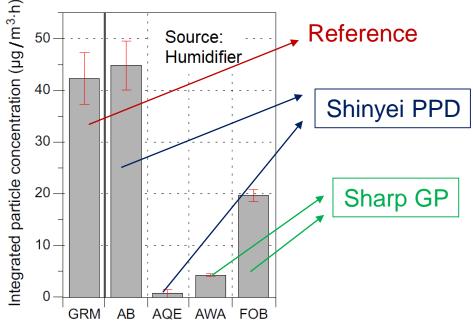
Adapted from Jayaratne et al. 2020 AAQR, 20: 520-532


Influence of indoor climate

- Low-cost PM sensors do not dry particles
 - This can lead to compromised accuracy as a function of particle hygroscopicity
- Humidity seems to matter more compared to air temperature
 - Threshold ~85%

SCIENCES

ENGINEERING


• Aerosol composition matters

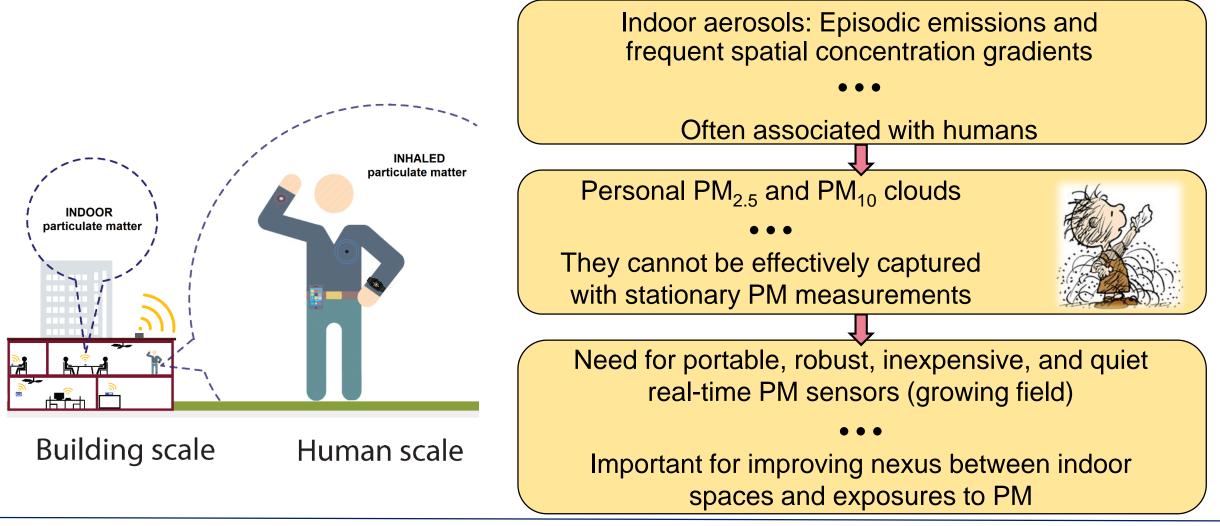
Adapted from Wang et al. 2015 Aerosol Sci Tech, 49: 1063-1077

Recommendations for stakeholders

- For standard / guideline developers: Formulate standard guidelines for assessing the short and long term performance of sensors that can be used by all
- For researchers: Standardize performance testing to assess the performance and allow inter-comparison between studies. Pre-test / calibrate sensors under the conditions in which the sensors/monitors will be used
- For sellers / manufacturers (personal view): Offer selection of sensors / monitors that are pre-calibrated for various types of indoor and outdoor environments
 - & offer more transparency for calibrations algorithms
- For non-expert users?

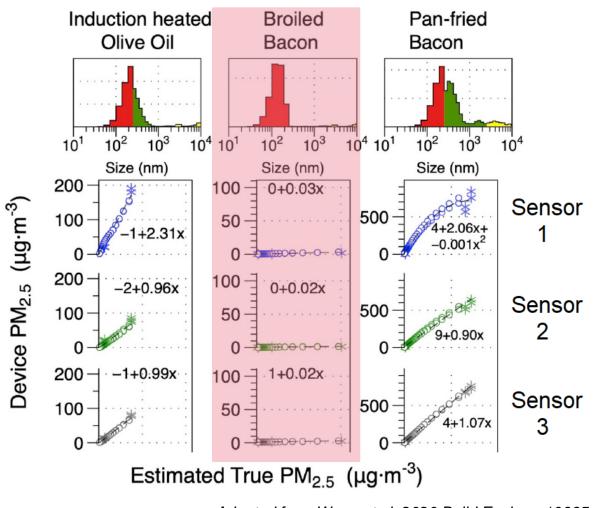
Adapted from Singer and Delp 2018, INA, 28: 624-639

Deployment challenges and needs


- At present, only voluntary actions exist for continuous PM monitoring
- Early experimentations with continuous PM sensing indoors
 - WELL v2 A08: Air quality monitoring and awareness (optional):
 - Continuous monitoring every of $PM_{2.5}$ or PM_{10} (accuracy 25% at 50 μ g/m³)
 - min once recording every 10 min
 - one sensor every 325 m² (3'500 ft²)

Research questions to improve deployment guidelines:

- How to ensure long-term performance in field environments?
- What is the optimal time resolution for low-cost PM sensors?
- What is the optimal sensor placement and density to capture human exposures?



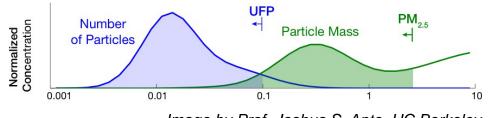
Deployment challenges and needs

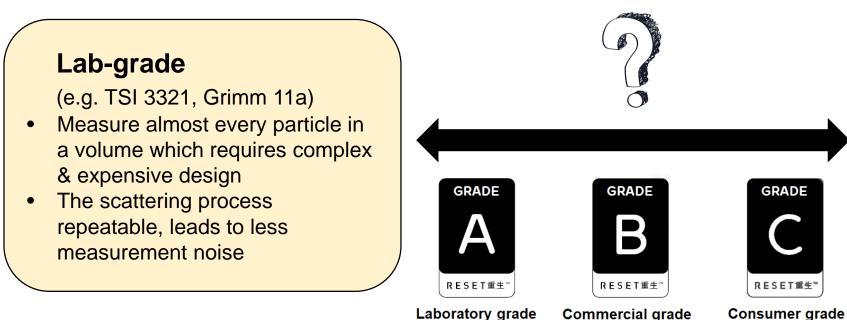
Workshop on Indoor Exposure to Fine Particulate Matter and Practical Mitigation Approaches Dusan Licina I dusan.licina@epfl.ch

Other needs: Ultrafine particles (UFP)

Adapted from Wang et al. 2020 Build Environ, 106654

- At present, there are no low-cost sensors available for UFP monitoring
 - This is especially important for spaces where strong sources of UFP can be identified (combustion, electrical appliances, etc.)
- Word of caution: Many UFP sources also emit particles above 0.3 µm!




Image by Prof. Joshua S. Apte, UC Berkeley

 Need: New measurement approaches for detecting the UFP range at low cost

Workshop on Indoor Exposure to Fine Particulate Matter and Practical Mitigation Approaches Dusan Licina I <u>dusan.licina@epfl.ch</u>

Not to forget about optimal trade-offs

- Do we need low-cost sensors to be as good as high-grade equipment?
- Can sensor data serve as a new class, rather than a proxy for traditional measurements?

Consumer-grade

- Designed for optimized cost, size and performance
- Measures only a small fraction of particles (small air flow, very focused and small laser detection area)
- Simpler optical design that leads to higher measurement noise

Adapted from RESET[™] 2018

Workshop on Indoor Exposure to Fine Particulate Matter and Practical Mitigation Approaches Dusan Licina I <u>dusan.licina@epfl.ch</u>

Summary

- Exciting new opportunities and needs
- At present:
 - No sensor is ideal for all applications need to find optimal trade-off
 - PM_{2.5} sensors probably good enough for PM management (sometimes for UFP)
 - Not fully ready to replace more established methods in which precise and absolute determination is needed (e.g. regulatory compliance, epidemiological studies, etc.)
- Research needs Many!
 - More (long term) field validations & developments are needed to assess evolving sensors and monitors with application to health studies
- Advancing knowledge in low-cost measurement techniques for indoor PM increases the likelihood that future control interventions can be used both to prevent undesired health consequences and to promote beneficial health outcomes