PCOR Data Infrastructure Limitations and Opportunities: COVID-19 as Use Case

Can Vitamin D Reduce the Burden of COVID-19?

NASEM Building Capacity for PCOR: An Agenda for 2021-2030 Virtual Workshop 1: Looking Ahead at Data Needs

> David Meltzer, MD PhD The University of Chicago May 3, 2021

How I got started on this

From: AllMedx[™] <allmedx@mail.allmedx.com>

Date: March 10, 2020 at 2:01:32 PM CDT

To: "Meltzer, David [MED]" <dmeltzer@medicine.bsd.uchicago.edu>

Subject: Vitamin D & Respiratory Issues

Reply-To: allmedx@mail.allmedx.com

• Individual-level meta-analysis of RCTs studying effects of daily vitamin D supplementation on viral respiratory tract infection

Population	Trials	Proportion with ≥1 ARTI, control group (%)	Proportion with ≥1 ARTI, intervention group (%)	Adjusted* odds ratio (95% CI)	р
Overall	15	1210/2439 (49.6)	1206/2694 (44.8)	0.81 (0.72 to 0.91)	0.001
Baseline 25(OH)D :					
<10 ng/ml	6	64/107 (59.8)	40/127 (31.5)	0.30 (0.17 to 0.53)	0.001
≥10 ng/ml	11	477/729 (65.4)	516/874 (59.0)	0.75 (0.60 to 0.95)	0.02

Martineau et al BMJ, 2017

Vitamin D and COVID-19?

- Vitamin D
 - Hormone, produced in response to sunlight
 - Important for many functions, including innate and adaptive immunity, immunomodulation
 - Deficiency common(~50% US adults, >80% non-whites)
 - Supplementation often needed
- Coronaviruses common seasonal cause of lower respiratory tract infections in adults (~7% of LRTIs, 25% viral LRTIs)
- Epidemiologic associations of vitamin D deficiency and COVID-19
 - African-American/Black, Hispanic/LatinX
 - Older adults, nursing home residents, obese persons
 - Winter, UV exposure, Orthodox Jews

Observational Analysis at University of Chicago Medicine

- Sample: 489 patients with vitamin D level 14-365 days before COVID-19 test (March 3 April 10, 2020)
- Defined likely deficient vs. likely sufficient 25(OH)D level
 - Likely deficient: level <20 ng/ml, treatment not increased after that level (25%)
 - Likely sufficient: level ≥20 ng/ml, treatment not decreased after that level (59%)
 - Control for demographic variables, comorbidities
- Estimated generalized linear models to predict testing positive for COVID-19
 - Relative risk of testing positive
 - Predicted COVID-19 positive rates

JAMA Network							
	JAMA Network Open		JAMA Network Open		•	Enter Sear	
This Issue Views 344,691 Citations 50 Altmetric 3066 Comments 4							
🏷 PDF	(f) More	▽ [CME & MOC	G Cite	C Peri	missions	
Original	Investigation	ı Inf	fectious Disea	ses		Ŀ	

September 3, 2020

Association of Vitamin D Status and Other Clinical Characteristics With COVID-19 Test Results

David O. Meltzer, MD, PhD¹; Thomas J. Best, PhD²; Hui Zhang, PhD²; <u>et al</u>

 \gg Author Affiliations ~~|~~ Article Information

JAMA Netw Open. 2020;3(9):e2019722. doi:10.1001/jamanetworkopen.2020.19722

Findings

- Estimated generalized linear models to predict testing positive for COVID-19
 - Relative risk of testing positive:
 - 1.77, 95% CI(1.12-2.81), p<0.02 for likely deficient vs. likely sufficient
 - Predicted COVID-19 positive rates:
 - 21.6% for likely deficient vs.
 12.2% for likely sufficient
 - Results in other than Whites (African-Americans) similar to full sample but wide confidence intervals for Whites; low rates and samples size in other than Whites

Table 4. Multivariable Association of Vitamin D Deficiency and Treatment With Testing Positive for COVID-19 in 489 Patients

Characteristic	No. (%)	Relative risk (95% CI)	P value
Age (linear spline)ª			
<50	260 (53)	1.05 (1.01-1.09)	.02
≥50	229 (47)	1.02 (1.00-1.05)	.06
Sex			
Male	123 (25)	1 [Reference]	
Female	366 (75)	0.87 (0.52-1.44)	.58
Race			
White	158 (32)	1 [Reference]	
Other than White	331 (68)	2.54 (1.26-5.12)	.009
Ethnicity			
Non-Hispanic	448 (92)	1 [Reference]	
Hispanic	41 (8)	0.29 (0.04-2.01)	.21
Employee status, UCM employee			
No	328 (67)	1 [Reference]	
Yes	161 (33)	0.93 (0.52-1.64)	.79
Most recent vitamin D <20 ng/mL			
Likely deficient ^b	124 (25)	1.77 (1.12-2.81)	.02
Uncertain deficiency ^c	48 (10)	1.10 (0.49-2.43)	.82
Uncertain deficiency ^d	30 (5)	1.09 (0.43-2.82)	.85
Likely sufficient ^e	287 (59)	1 [Reference]	
Comorbidity indicators			
Hypertension	261 (53)	1.08 (0.60-1.97)	.79
Diabetes	137 (28)	0.78 (0.49-1.26)	.31
Chronic pulmonary disease	117 (24)	0.91 (0.55-1.52)	.73
Pulmonary circulation disorders	20 (4)	0.64 (0.23-1.79)	.40
Depression	119 (24)	1.22 (0.74-2.02)	.44
Chronic kidney disease	116 (24)	0.80 (0.49-1.32)	.39
Liver disease	56 (11)	0.99 (0.47-2.08)	.98
Comorbidities with immunosuppression	105 (21)	0.39 (0.20-0.76)	.005
BMI, mean	29.8	1.02 (0.996-1.048)	.10
Goodness-of-link test of squared predicted value ³¹	NA	NA	.87
Hosmer-Lemeshow goodness-of-fit decile test ³²	NA	NA	.89

Figure. Estimated COVID-19 Rates by Most Recent Vitamin D Level

Meltzer et al Association of Vitamin D Levels, Race/Ethnicity, and Clinical Characteristics With COVID-19 Test Results, JAMA Network Open, March 19, 2021

Table 4. COVID-19 Positivity Rate by Most Recent Vitamin D Level and by Treatment

	Individuals with positive COVID-19 test result/total tested, No. (%)				
Active treatment 14 d before first COVID-19		Most recent vitamin D level from 14 to 365 d before first COVID-19 test order, ng/mL			
test order date	Total	<20	20-29	30-39	≥40
Total	299/4258 (7.0)	100/1076 (9.3)	70/1175 (6.0)	72/961 (7.5)	57/1046 (5.4)
None	239/3338 (7.2)	81/900 (9.0)	53/917 (5.8)	59/733 (8.0)	46/788 (5.8)
$1-1000 \text{ IU/d } D_3 \text{ or multivitamin}$	45/616 (7.3)	13/116 (11.2)	13/171 (7.6)	12/167 (7.2)	7/162 (4.3)
1001-2000 IU/d D ₃	9/173 (5.2)	2/36 (5.6)	4/57 (7.0)	0/39	3/41 (7.3)
≥2001 IU/d D ₃	6/131 (4.6)	4/24 (16.7)	0/30	1/22 (4.5)	1/55 (1.8)

- Among persons taking ≥2001 IU/day
 - Vitamin D≥20 ng/ml: 2/107 (2%)
 - Vitamin D<20 ng/ml: 4/24 (17%) (p=0.01)</p>

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2777682

Peer-reviewed Person-level Analysis w COVID-19 Infection as Outcome

- Merzon et al.
 - N=7807, Israeli health system cohort
 - OR=1.45 (p<.001) of COVID-19 infection if 25(OH)D < 30 ng/ml
- Kaufman et al.
 - N=190,000 US cases tested by Quest Diagnostics
 - Race imputed by zipcode
- Hastie et al.
 - N=348,958, UK Biobank study cohort
 - 25(OH)D and COVID not associated, but 25(OH)D > 10 yrs before COVID testing
- Ma et al.
 - N=8,297, UK Biobank study cohort
 - OR=0.66 (p=0.034) if habitual use of vitamin D supplements, not associated with baseline or genetically predicted levels

RCTs of Vitamin D and COVID-19 Severity

- Castillo et al RCT of calcifediol vs. usual care
 - ICU transfer: 1/50 (2%) calcifediol vs. 13/26 (50%) usual care (p<0.001)
- Murai et al. RCT D3 200,000 IU vitamin D x 1 vs. placebo
 - 240 patients: LOS, mortality, ICU N.S., mech ventilation 7% vs. 14% (p=0.09)
 - 25(OH)D \leq 20 ng/ml: ICU, mech ventilation N.S.
 - 25(OH)D>20 ng/ml re-analysis (Meltzer et al.):
 - ICU: 8/62 (13%) vitamin D vs. 16/60 (27%) placebo, RR=0.48, p(chi-square) = 0.055
 - Mech Vent: 5/62 (8%) ICU vs. 12/60 (20%) placebo, RR=0.40, p(chi-square) = 0.057
 - May reflect benefits for whites; patients of African descent may need daily dosing (Gc1F VDBP, 24-dehydroxylase) to optimize free vitamin D levels
- Rastogi et al. RCT D3 60,000 IU/d x 7d vs. placebo
 - 10/16 (63%) vitD vs. 5/24 (21%) placebo RNA-neg at 14d (p<0.02), lower fibrinogen (p<0.01)

Castillo et al. J Steroid Biochem Mol Biol. 2020; Murai et al., JAMA, 2021; Ratogi et al., Postgraduate Medical Journal, 2020

Additional Observational Analyses in Progress

- National COVID Cohort Collaborative (N3C)
 - Funded by NCATS, ~ 50 sites, >1 million COVID patients plus controls
 - Data continuously added; some paring of controls vs. COVID cases
 - Secure computing environment, collaborative ecosystem
 - Sample size/coverage to allow analysis of levels, seasonality, location, racial subgroups
- Epic Cosmos
 - Several times larger than N3C
 - Only Epic personnel can access data
- VA data (with Robert Gibbons and others)
 - Includes Rx of vitamin D
 - Examine hazard of COVID diagnosis after new vitamin D prescription
- PCORNet/CAPriCORN
 - Multicenter EHR data with deep Chicago-area coverage and ability to extend nationally
 - Linked contextual data, little PRO data, biomarkers only via routine care
 - Greater neighborhood disorder associated with lower 25(OH)D in pregnant Chicago women (Woo, 2020)

Observations Related to PCOR Infrastructure in Vitamin D/COVID Research

- PCOR data provided important insights, sometimes rapidly
 - Ease of access, including administrative and technical barriers, cost affected use
- Relevant data infrastructure diverse and overlapping
 - Multiple public and private sources provided opportunities
 - International data sources also advanced the field
- Data completeness and quality questions evident
- Contextual and patient-reported variables relevant
- Biomarker data valuable, additional biomarker data important (e.g., All of Us)
- Initiating RCTs important and complementary with observational studies

Thank you!

For more information: https://chess.uchicago.edu/vitaminD