Geothermal Technologies Office Next Generation R&D

Eric Hass Hydrothermal Program Manager Geothermal Technologies Office May 4, 2016

Geothermal Technologies – FY16 & FY17 Major Initiatives

Subsurface Technology and Engineering Research (SubTER): DOE Cross-cut Initiative

Goal of SubTER is "Adaptive Control of Subsurface Fractures and Fluid Flow"

- 80% of the US energy supply comes from subsurface resources
- Critical for EGS, hydrothermal
- Also critical for oil & gas, carbon sequestration, safe disposal of nuclear waste, etc.
 → cross-cutting

Wellbore Integrity

Materials and technologies to ensure wellbore integrity over decadal timeframes

Subsurface Stress & Induced Seismicity

Characterization and control subsurface stress and induced seismicity

Permeability Manipulation & Fluid Control

Approaches to manipulate subsurface fractures, reactions and flow

New Subsurface Signals

Sensors and algorithms to monitor subsurface dynamics and facilitate adaptive control

Subsurface Engineering Crosscut (SubTER)

Address subsurface energy challenges common to multiple sectors

DISCOVER viable, low-risk resources

integrated technologies

CO₂ Storage

Geothermal

Oil and Gas

Nuclear Waste Disposal

Subsurface Remediation

Energy Storage

ENGINEER desired subsurface conditions in a challenging environment

Accurately CHARACTERIZE using

Quantitatively **PREDICT** evolution

for current and engineered conditions

Safe, cost-effective methods to ACCESS the subsurface

SUSTAIN optimal conditions over multi-decadal or longer time frames

Improve methods to **MONITOR** multi-scale complexities throughout system lifetimes

GTO has up to \$3 million available to **Develop Novel Subsurface Imaging** and Characterization Technologies as part of a joint funding opportunity. Applications are due by May 5th

Subsurface Technology and Engineering Research (SubTER): Lab Sapling Projects

Wellbore Integrity

3D Acoustic Borehole Integrity Monitoring System (LANL)

Ultrasonic Arrays and Tomography for Inspection of Geothermal Wells (ORNL) Subsurface Stress & Induced Seismicity

Permeability Manipulation

New Subsurface Signals

Hydraulic Fracture Field Laboratory in a Deep Mine (LBNL)

Measuring Stress Away from the Borehole (LANL)

MicroBayesloc Location Method (LLNL) Borehole Muon
Detector for
Tomography of
Subsurface
Reservoirs (PNNL)

Imaging Fractures Using Crosshole Seismic and Advanced Change Detection Algorithms (SNL)

Big Data Analytics for...

Spectroscopy Stress Sensor for In-Situ Stress (ORNL)

... Induced Seis. (NETL)

FORGE

(Frontier Observatory for Research in Geothermal Energy)

Federal Role:

- Test technologies/take
 technical risks not possible
 in private sector
 High risk, high pay-off
 research and
 development
- Advance innovation –
 domestic & international
- Work under aggressive timeframe

F@RGE

RIZING

AN EGS LABORATORY

where the subsurface scientific community can test and improve new technologies and techniques for creating and sustaining nextgeneration geothermal systems.

Research Tenets:

- Gain a fundamental understanding of the key mechanisms controlling EGS success
- •Develop, test and improve new fundamental and techniques in an ideal EGS environment.
- Make Integrated comparison of technologies and tools in a controlled environment
- Rapidly disseminate technical data and communicate to the research community, developers, and other interested parties.

Opportunity:

- Heat is present almost everywhere at depth
- USGS estimates the potential resource to be on the order of 100+ GWe

BEN

Play Fairway Analysis

Phase I

- Compile, analyze, and interpret existing data
- Integrate maps of different required geologic conditions to identify locations where all conditions are most likely to be present
 - Favorability maps

Phase II

- · Identify and fill data gaps
- Refine geologic models and favorability maps
 - High grade potential areas for future drilling
 - Target drill sites

PLAY FAIRWAY ANALYSIS

OUTPUT = Favorability maps that show low, moderate, and high probability for geothermal resource development potential

Phase III Validation

- Drill temperature gradient and/or slimholes
- Refine favorability maps and evaluation of resource potential and economic impact

Phase I: Complete (11 awards)

Phase II: In Progress (6 awards)

Phase III: Drilling

Geothermal Regulatory & Cost Barriers

GTO funded the National Renewable Energy Laboratory to develop a permitting roadmap for geothermal power projects at the federal and state level to enable projects to better understand and maneuver the current process.

Potential bottlenecks in the permitting process increase the cost and financial risk of a project. The impact of a single permitting delay may be small, but the cumulative impact of multiple, often independent, and sometimes conflicting regulations on geothermal power development projects can hinder new projects, or make them unprofitable.

- Regulatory and Permitting Information Desktop Toolkit (RAPID) Analysis Project, GTO Peer Review Presentation

Low Temperature Efforts

Courtesy Electratherm

- Ongoing effort in low-temperature Mineral
 Extraction resource assessment and feasibility
- Upcoming opportunity in large-scale Direct
 Use of geothermal hot fluids for heating and cooling technology development through commercial deployment
- Potential displacement of traditional baseload generation on site-by-site basis
- Targeted RD&D on innovative energy conversion, additional **revenue-stream creation** (e.g., **hybrid systems** & thermal **desalination**), and further development of power generation cycles