Cognitive and psychological effects of climate change on older adults

Noah J. Webster

Institute for Social Research, University of Michigan

The National Academies of Sciences, Engineering, and Medicine – Committee on Population (Virtual) Seminar on the Consequences of Climate Change for Health at Older Ages, May 9, 2022

Outline

Background

Relevant Theories/Perspectives

 Data highlights (leveraging existing data) focused on urban flooding

Data needs/ideas

Background

How can climate change effect cognitive and psychological health?

Stress → Cognitive Decline/Health

<u>Stress</u> → <u>Poor Mental Health</u> → Cognitive Decline/Health

How stressful?

- Extreme Heat → increased risk of illness, hospitalizations, and death;
 especially among those with chronic conditions
 - Increased vulnerability among those with limited access to AC
- Poor air quality worsens respiratory conditions common in older adults such as asthma and chronic obstructive pulmonary disorder
- Flood-related fatalities: Almost half of deaths from Hurricane Katrina were people over age 75; Superstorm Sandy almost half were over age 65.
 - Increased vulnerability In cases of evacuation
 - Power interruptions needed for medical equipment and medications

Theories/Perspectives

- Climate change and population aging two developing and converging trends
- Competing theories <u>Cumulative Advantage/Disadvantage</u> OR <u>Age</u> <u>as leveler</u>
 - Q: Will effects of climate change on older adults exacerbate life course inequalities and other (e.g., racial/ethnic, SES) disparities?

 OR will the effects be experienced by all older adults similarly (I expect/hypothesize the first)
- Risk, resilience or both?
- Climate change as opportunity for older adults
 - Designing interventions optimized for older adults (data example)
 - Opportunities for engagement/volunteering (e.g., work of Karl Pillemer and others on environmental volunteerism Volunteering

 better mental and cognitive health

Localized/Urban Flooding as example

- Climate change, coupled with urban development and aging infrastructure driving greater flood risks in many cities in the U.S. and around the world
- 2019 National Academies report 'Flooding is the natural hazard with the greatest economic and social impact in the United States, and these impacts are becoming more severe over time'
- Not just hurricanes and coastal areas knowledge of less catastrophic but more frequent localized flooding is highly limited and incomplete (National Academies of Sciences & Medicine, 2019)
- 'hundred-year' storms happening more frequently
 - amount of precipitation falling in shorter time frames
- These rain events cause stormwater systems to become overwhelmed, leading to street flooding and basement backups

Data highlight #1

Project: Overcoming Social and Technical Barriers for the Broad Adoption of Smart Stormwater Systems

*Funded by the National Science foundation https://www.nsf.gov/awardsearch/showAward?AWD ID=1737432

<u>Investigators</u>

Branko Kerkez, University of Michigan (Principal Investigator)
Jonathan Goodall, University of Virginia (Co-Principal Investigator)
Ruben Kertesz, Xylem, Inc. (Co-Principal Investigator)
Lisa Mason, University of Denver (Co-Principal Investigator)
Joan Nassauer, University of Michigan (Co-Principal Investigator)
Noah Webster, University of Michigan (Co-Investigator)

Data highlight #1

- Random samples of residents living in Ann Arbor, Knoxville, and South Bend
- Mail survey administered in fall of 2019

Over 24% response rate (n=977)

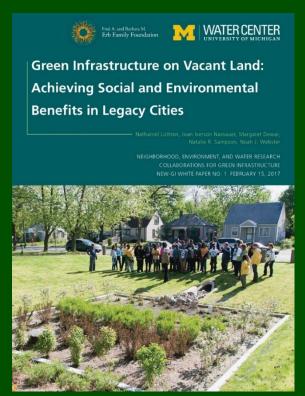
 Sample with complete data on age n=863 42.9% (370) Age 60+

 Income: 45.9% (396) live in census block group with median income below city median

Data highlight #1: Flood worry

<u>Survey Question</u>: When you notice standing water caused by water from rain or melting snow in locations nearby your property, how much <u>do you worry</u> about potential damage to your home or property? (1=do not worry at all; 4=worry a lot)

- Mean = 2.1 (SD=1.0)
- Median = 2 (worry a little)
- 36.2% (307) worry some to a lot


Data highlight #1: Worry some to a lot about flooding by age

	60+ (n=370)	<60 (n=493)	% difference	Chi- square test
Full sample (n=863) %	30.6	40.5	9.9	**
Lower income (n=396) %	26.4	37.8	11.4	*
Higher income (n=467) %	33.5	43.1	9.6	*

^{*} p<.05; ** p<.01

 Older adults more resilient (less worry) generally, and even more so among those living in lower income neighborhoods

Data highlight #2: Neighborhood, Environment, and Water Collaborations for Green Infrastructure (NEW-GI)

Whitepapers available at: https://www.joan-nassauer.com/new-gi

Acknowledgement: This work was funded with a grant to the University of Michigan Water Center from the Erb Family Foundation.

OUR TRANSDISCIPLINARY TEAM

ADVISORY COMMITTEE:

Palencia Mobley, P.E., Chair (Deputy Director and Chief Engineer, Detroit Water and Sewerage Department)

Darnell Adams (Director of Inventory, Detroit Land Bank Authority)

Janet Attarian (Deputy Director, Detroit Planning & Development Department)

Kenyetta Campbell (Executive Director, Cody Rouge Community Action Alliance)

Parvez Jafri (Engineer, Detroit Water and Sewerage Department)

Erin Kelly (Lead Landscape Architect, Office of Strategic Planning, Detroit Planning & Development Department)

Barbara Matney (President, Warrendale Community Organization)

Betsy Palazzola (General Manager, Detroit Department of Housing and Revitalization)

Jodee Raines, ex-officio (Vice President of Programs, Erb Family Foundation)

Carol Hufnagel, ex-officio (National Wet-Weather Practice Leader, Tetra Tech)

RESEARCHERS:

Joan Nassauer (University of Michigan, Natural Resources and Environment)

Alicia Alvarez (University of Michigan, Law)

Allen Burton (University of Michigan, Natural Resources and Environment)

Margaret Dewar (University of Michigan, Urban and Regional Planning)

Shawn McElmurry (Wayne State University, Engineering)

Catherine Riseng (University of Michigan, Natural Resources and Environment)

Natalie Sampson (University of Michigan Dearborn, Health and Human Services)

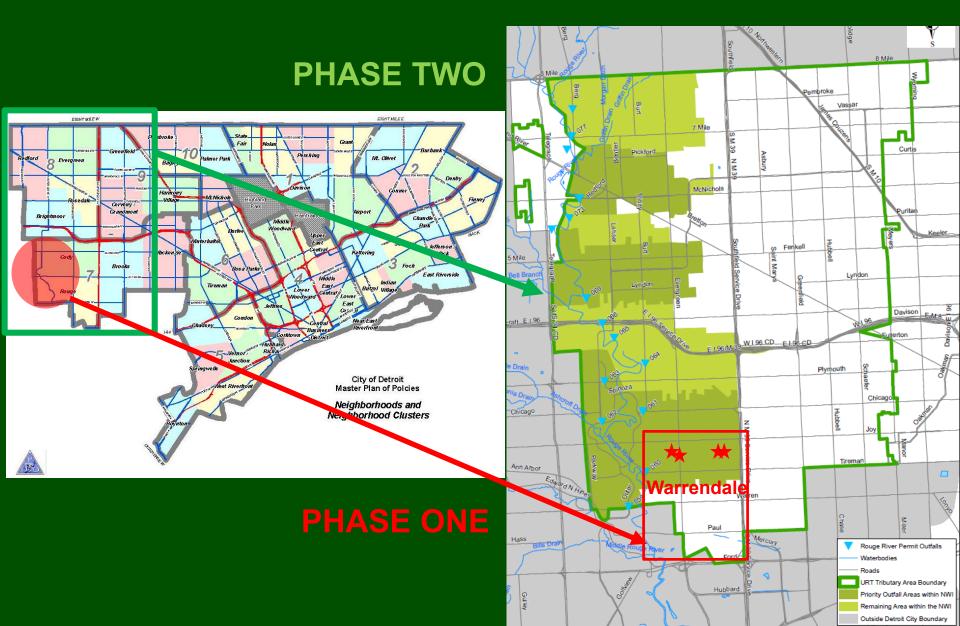
Amy Schulz (University of Michigan, Public Health)

Noah Webster (University of Michigan, Institute for Social Research)

Aims of NEW-GI

PHASE ONE (2014-2015):

- Develop garden designs & construct pilot sites
- Conduct initial survey in Detroit's Warrdendale neighborhood (located in 'Upper Rouge Tributary' (URT)
- Studied GI governance in Baltimore, Buffalo, Cleveland, Detroit, Gary, Milwaukee, New Orleans, Philadelphia, Washington D.C.,


PHASE TWO (2016-2018):

- Review & synthesize scholarly GI literature
- Assess pilot gardens' performance: operationally & socially
- Bring design concepts to scale across CSO watershed (URT)
- Review GI-related governance of vacant properties in other legacy cities
- Produce guidance documents/whitepapers for local GI stakeholders

Previous Findings & Hypotheses Relative to Design

- Distinct from other forms of greening in design & function: manage stormwater in legacy cities
- Potential 'co-benefits':
 - New opportunities for physical activity, stress reduction
 & coping, social interaction
 - Reduced crime
 - Reduced heat island effect; air pollution mitigation

Pilot and Survey Sites in Detroit, MI

Data highlight #2

- Face to face interviews conducted in Detroit's Upper Rouge Tributary 2017-18 (n=308)
- Questions asked about basement flooding and also perceived impact of new neighborhood rain gardens
- Age 60+ 27.3% (n=84)

Source: Nassauer, J. I., Webster, N. J., Sampson, N., & Li, J. (2021). Care and safety in neighborhood preferences for vacant lot greenspace in legacy cities. *Landscape and Urban Planning*, *214*, 104156.

Data highlight #2: Flood freq by age

<u>Survey Question:</u> In the last year, how many times has your household had problems with flooding or standing water in your basement? Would you say never, 1-2 times in the last year, 3-5 times, OR more than 5 times?

Full Sample (n=308)

Any flooding experienced in last year - 36.1% (n=104)

*Chi-square test – no significant difference (p<.05) in flood experience by age

Data highlight #2: Flood impact by age

<u>Survey Question:</u> If you had experienced flooding (n=104), how have you been affected?

	Full sample	60+	<60
	(n=104)	(n=23)	(n=81)
Monetary loss due to repairs? (%, n)	49.0 (51)	52.2 (12)	48.1 (39)
Monetary loss due to loss of valuables? (%, n)	58.7	52.2	60.5
	(61)	(12)	(49)
Causes stress? (%, n)	64.4	60.9	65.4
	67)	(14)	(53)

^{*}Chi-square tests – no significant differences (p<.05) by age

- Data suggests less exposure among older adults compared to younger
- Older adults descriptively more resilient when exposed to flooding compared to younger adults

Data highlight #2: Flood freq & Depressive symptoms by age

Depressive Symptoms - 20-item CES-D (0 to 3) averaged

Flood frequency in last year (1=never; 4=5+times)

Full Sample (n=308)

Flooding frequency (M=1.5) → Depressive Symptoms (0.6) (r=.15*)

Age 60+ (n=84)

Flooding frequency (M=1.4) \rightarrow Depressive Symptoms (0.6) (r=.09)

Age <60 (n=224)

Flooding frequency (M=1.6) \rightarrow Depressive Symptoms (0.5) (r=.17*)

Data highlight #2: Co-Benefits

<u>Survey Questions:</u> how much do you think having the garden nearby has had an impact on:

- 1) Your mental or emotional health (1=worsen a lot; 5=improve a lot);
- 2) Amount that you see/interact with neighbors (1=decrease a lot; 5=increase a lot)

Impact of garden nearby on	Full sample (n=134)	60+ (n=33)	<60 (n=101)	Sig difference (p<.05)
Mental/emotional health (Mean, SD)	3.7 (0.7)	3.8 (0.7)	3.6 (0.7)	NS
Amount interact with neighbors (Mean, SD)	3.6 (0.7)	3.8 (0.6)	3.5 (0.7)	*

- New neighborhood rain gardens with a primary purpose to manage urban stormwater can have social co-benefits – median 4 (increase some)
- Older adults benefited significantly more in terms of interactions with neighbors.

Data needs/ideas

- Leverage existing data not explicitly focused on older adults, but have age as a variable
 - e.g., follow-up with older adults in these studies
- Add climate change experience/distress modules to ongoing population-level studies (e.g., Health and Retirement Study)
 - Encourage use of standardized measures
- Need larger samples to focus on within group (among older adults)
 heterogeneity to understand intersections with other factors (e.g.,
 race, SES)
- New studies/primary data collections focused explicitly on older adults and climate change experiences and impacts – broad range of impact events, flooding, fire
- Ecological momentary assessments as flood events happen

Thank you njwebs@umich.edu