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Are radiologists meeting targets for 
acceptable interpretive performance? 

 Targets have been established for interpretive performance 
 We would like to identify radiologists who are/are not meeting these 

targets 
 Is this an achievable goal given the data that we have available? 
 This is a profiling task with objective of classifying radiologists 

relative to a fixed benchmark 
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Challenges to estimating radiologist 
performance 

 Correct classification depends on our 
ability to distinguish between 
radiologists with differing performance 
• Requires more variability between 

radiologists and less variability within 
radiologists 

 Within-provider (error) variation may be 
large due to small provider volume 

 Reliability = between-provider 
variability/total variability 
• Reliability >0.9 generally considered to be 

necessary for “high stakes” profiling (e.g., 
public reporting) 
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Objective 

 Discuss relevant statistical considerations for identifying 
radiologists failing to meet targets for interpretive performance 

 Use simulations to demonstrate performance of classification for 
recall and cancer detection rate 

 Demonstrate how these results are modified by use of imperfect 
proxy for performance measures based on claims data 
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Conceptual framework 

 Binary event of interest observed for each patient  

• Recall 

• Screen-detected cancer 

 Each provider has underlying, true performance  

• Unobservable without complete data on entire patient population 

• Objective of profiling is to make inference on performance based on a 

finite sample 
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Profiling methods  
 Classification based on point estimate 

• For each radiologist compute rate or proportion 
• Compare to guideline target and make classification 
• Can be adjusted to account for differences in patient population (case-

mix) using regression methods 
• May be unstable for small patient volumes 

 Classification based on confidence intervals 
• Compute confidence interval around point estimate 
• If confidence interval lies completely below/above target then classify 

as failing to meet target 
• Desired precision can be tuned by varying confidence level 
• Addresses instability in estimates for small volume providers 
• May be overly conservative 
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Simulation study design 
 We conducted a statistical simulation study to demonstrate 

performance of classification relative to guideline targets for recall 
and cancer detection rate using point estimates and CIs 

 Simulation study parameters chosen to generate data following 
real-world distribution of radiologist screening volume, CDR and 
recall 

 Performance of classification evaluated in terms of sensitivity 
• Sensitivity = Proportion of radiologists failing to meet target 

successfully identified as failing to meet target  
• Specificity = Proportion of radiologists meeting target successfully 

identified as meeting target  
 Evaluate sensitivity and specificity for 

• CDR relative to threshold of 2.5 per 1000 
• Recall relative to threshold of 12% 
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Simulation study design 
 Average of N = 1000 radiologists per simulation 
 Patient volumes ~ Gamma(3.4,458.4), truncated at 480 

• Mean = 1557, SD = 845 
 True radiologist performance measures 

• Recall ~ Beta(2.5, 26.4) 
– Mean = 8.5%, SD = 5.1% 
– Reliability = 0.981 

• CDR ~ Beta(1.36, 372.69) 
– Mean = 3.6/1000, SD = 3.1/1000 
– Reliability = 0.807 

 Repeat simulations 1000 times 
 



9 

Recall classification for simulated population 
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CDR classification for simulated population 
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Sensitivity and specificity for radiologist 
classification 
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 We also explored classification based on Medicare claims 
 This introduces an additional challenge since classification of an exam 

as resulting in recall or CDR is imperfect 
 Algorithm operating characteristics for proxy recall and CDR are 

known 
• Sensitivity: probability of event based on claims given truly was an event 
• Specificity: probability of no event based on claims given truly was no 

event 
 How does using an imperfect proxy for outcomes affect radiologist 

classification relative to targets? 
 

Considerations under outcome misclassification 
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Claims-based algorithms 

 Claims-based algorithms for recall and screen-detected cancer 
• Outcomes based on ICD-9 and HCPCS codes for breast imaging and 

breast cancer diagnosis around time of screening mammogram 
 Algorithm performance: 
 Recall: Sensitivity = 82.6%, Specificity = 96.7% 

 CDR: Sensitivity = 94.0%, Specificity = 99.9% 
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Medicare-linked BCSC data 

 Clinical data on mammography interpretation and cancer outcomes 
available from the Breast Cancer Surveillance Consortium 

 Linked to Medicare claims 
 Data on 134,330 screening mammograms from 2003 – 2005 

performed at 106 mammography facilities 
 Volume ranged from 52 to 5,925 mammograms per facility 
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Claims-based performance estimates 

ML point estimates and 95% confidence intervals 



16 

Comparison of Medicare and BCSC estimates 

 Imperfect specificity results in slight inflation of recall and CDR 
estimates 

 Provider-level estimates based on claims agree well with gold-
standard 

 However, agreement between the two sources does not ensure 
correct classification of providers 

 Evaluation of claims-based measures often includes only operating 
characteristics, but this does not address error in profiling due to 
sampling variability 

 We repeated the simulation study incorporating error due to 
imperfect classification 
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Sensitivity and specificity under 
misclassification 
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Conclusions 
 Reliability provides a good first indication of the likely success of 

profiling 
 With or without misclassification of outcomes, performance is 

reasonable for recall because it is relatively common 
 Classification of radiologists on CDR is challenging because 

outcome is rare 
• Profiling based on point estimates works reasonably well when there is 

no misclassification of events 
• Misclassification of events at the level of our Medicare claims-based 

algorithm resulted in low sensitivity 
 Incorporating uncertainty through CIs results in decrease in 

sensitivity, increase in specificity 
 The purpose of profiling should be considered when choosing an 

approach/determining acceptable levels of radiologist 
misclassification 
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