From Science to Technology: Knowledge Flows in the Renewable Energy Sector

David Popp May 2018

Introduction

- Most evaluations of energy innovation use patent data
 - Examples include Popp (AER 2002, JEEM 2006), Johnstone et al. (ERE 2010), Verdolini and Gaelotti (JEEM 2011), Dechezleprêtre and Glachant (ERE 2014)
 - Results show that energy prices, policies, and scientific opportunities all influence the development of clean energy technologies
- In recent work, I link scientific publication and patent data to evaluate public energy R&D
 - More appropriate outcome measure for early stage R&D
 - Popp (Nature Energy 2016) focuses on lags between funding and research outcomes
 - Popp (Research Policy 2017) focuses on knowledge flows across institutions

Data

- Both papers combine patent and scientific publication data
- Patent data from Delphion
 - Available from 1991-2011
 - Use patents granted in US
 - Use IPC classes to identify relevant patents for 3 different technologies:
 - Biofuels, Solar Energy, Wind Energy
- Use non-patent literature (NPL) citations to link scientific publications and patents

Data

- Scientific publication data from Thomson Reuters Web of Science
 - Available from 1991-2011
 - Used keyword searches to identify articles in 4 different technologies:
 - Biofuels, Energy Efficiency, Solar Energy, Wind Energy
 - For each technology, articles are counted by year and country:
 - Weighted counts: assigns articles proportionately by the # of countries represented
 - E.g. 2 US authors and 1 Japanese author: 0.67 US, 0.33 Japan

- Popp (Nature Energy 2016) focuses on two questions:
 - 1. How does government R&D affect outcomes of basic research?
 - How long until new publications to appear?
 - Compare to existing empirical literature, which often uses just a single year of energy R&D
 - Linking publication data to citations on U.S. energy patents, how long until these publications cited by a patent?
 - 2. Do adjustment costs associated with large increases in research funding result in diminishing returns to government R&D?

- Key results:
 - Links between R&D spending and research outcomes
 - One million dollars in additional government R&D funding leads to 1-2 additional publications, but with lags as long as ten years between initial funding and publication

Figure 2 | Cumulative effect of energy R&D on publications. The cumulative effect of an additional US\$1 million of public energy R&D on publications through year t + x, where x represents years since funding occurred, shown on the x-axis. Dashed lines represent 95% confidence intervals. Biofuels (a) energy efficiency (b), solar energy (c) and wind (d).

Key results:

- Links between R&D spending and research outcomes
 - One million dollars in additional government R&D funding leads to 1-2 additional publications, but with lags as long as ten years between initial funding and publication
 - Adjustment costs associated with large increases in research funding are of little concern at current levels of public energy R&D support
 - No evidence of diminishing returns for the *quantity* of publications
 - However, using citations as a measure of quality, citations fall as the number of competing publications increases, but magnitude is small

Key results:

- Links between R&D spending and research outcomes
 - One million dollars in additional government R&D funding leads to 1-2 additional publications, but with lags as long as ten years between initial funding and publication
 - Adjustment costs associated with large increases in research funding are of little concern at current levels of public energy R&D support
 - No evidence of diminishing returns for the *quantity* of publications
 - However, using citations as a measure of quality, citations fall as the number of competing publications increases, but magnitude is small
- Other demand characteristics (e.g. policy) less important
 - Since these factors have been found to influence private R&D, it does not appear that public R&D merely substitutes for other funding sources

Linking Publications and Patents

Linking Publications and Patents

- The ultimate goal of public R&D is to develop new technologies
 - For this, I link publications to patents, using non-patent literature (NPL) references on U.S. energy patents
 - Roach/Cohen (Management Science 2013) find non-patent citations are better measures of knowledge flowing from public research than patent citations
- Key question: How long does it take until publications are cited?

Share of articles receiving patent citations

	Biofuels		Solar	Solar		Wind	
		% with		% with		% with	
		patent		patent		patent	
	N	citation	N	citation	N	citation	
USA							
1991-1995	168.8	4.1%	618.0	4.2%	56.3	8.9%	
1996-2000	318.1	7.8%	669.3	6.7%	96.3	4.2%	
2001-2005	408.9	4.9%	981.4	4.4%	163.4	6.1%	
2006-2011	3532.9	0.7%	4055.2	0.6%	600.6	0.3%	
Total	4428.6	1.7%	6323.9	2.2%	916.5	2.3%	
foreign							
1991-1995	630.2	0.6%	2054.0	2.8%	264.7	3.0%	
1996-2000	959.9	1.2%	3669.7	4.2%	406.8	3.2%	
2001-2005	1783.1	1.1%	6172.6	2.3%	758.7	2.2%	
2006-2011	12847.1	0.2%	23055.8	0.2%	3268.4	0.2%	
Total	16220.4	0.4%	34952.1	1.2%	4698.5	0.9%	

Linking Publications and Patents

- Because of truncation issues, model time to first NPL citation using a hazard regression
 - Use articles published in 2009 or earlier, with patents granted by 2011
 - Use an exponential baseline hazard, since I explicitly model effect of time using the citation lag
 - Consider both full sample (1991-2009) and articles published since 2000
 - Has time to citation changed as citing opportunities increase?

$$h(t) = \exp(\alpha_0 + \alpha_1 citation lag + \alpha_2 citation lag^2 + \alpha_3 multicountry + \gamma Y C_{i,t})$$

- $-\gamma YC_{i,t}$ represent country by cited year fixed effects
- Controls for different citing opportunities in different countries

Probability of NPL citation over time

Annual probability of NPL citation

Cumulative probability of NPL citation

- Peak of annual probability of citation:
 - Full sample: 11-14 years (dashed lines)
 - 2000+ sample: 8-10 years (solid lines)
 - Note: mean patent grant lag is 5 years

Increased probability of NPL citation from additional energy R&D

Annual probability of NPL citation

- Impact of R&D funding must also consider lags to publication
 - Full sample: 13-19 years (dashed lines)
 - 2000+ sample: 10-12 years (solid lines)
- Suggests substantial lags needed to evaluate energy R&D

Knowledge Flows in Renewable Energy

- Popp (Research Policy, 2017) extends this work by providing more detail on the knowledge flows between published and patented clean energy research
 - To help decision makers target R&D funds towards both the technologies and institutions where they will be more successful
 - Two questions:
 - 1. What information is most useful to the development of new technology? Does high quality science lead to commercial success?
 - Do article/article citations also indicate relevance for applied work?
 - 2. Which institutions produce the most valuable research?
 - Do collaborations between public and private research organizations increase flows of knowledge among groups?

- Many researchers use citations as a proxy for article quality
- But, are highly cited scientific articles also more likely to be cited by patents?
 - Or, are the articles that inventors of new technology find useful different from those that other academic researchers find useful?

- Results are non-linear: highly cited articles are more likely to be cited by patents
 - Except for solar, no significant results at 5% level until 75th percentile of article citations
 - Increased probability of citation is much higher in top percentiles of article citations
 - Articles in the 90th-95th percentile for either actual publications or a "quality index" are 206-360 percent more likely to be cited by a patent
 - In the 95th-100th percentile, articles are 278-576% more likely to be cited by a patent

- Little evidence of the need for "intermediary" publications linking highly cited basic science to applied technologies
 - Look at citations to "children" of highly cited patents: articles that cite other alternative energy articles with citation counts in the top 90th percentile
 - Coefficient on children is positive in all but one case, but only significant for solar energy
 - Magnitude of the effect is smaller: children of highly cited patents are an additional
 31% more likely to be cited for solar energy
 - Compare to Gittleman and Kogut (2003), who find that what makes successful science does not necessarily lead to successful technology in biotechnology

Knowledge flows across institutions

Knowledge flows across institutions

- I next use these citation data to examine:
 - the quality of articles and patents across different research organizations
 - the flow of knowledge across these institutions
- Focus on five organization types:
 - (1) universities; (2) governments (e.g. government laboratories); (3) research institutes; (4) private companies; (5) other organizations (including individual inventors)
 - Collaborations between two or more institutions are a separate category
 - To focus on public/private technology transfer, separately identify collaborations with a private company partner
 - Based on organizations performing research, not funding research

Knowledge flows across institutions

- Use citation cohort model developed by Adam Jaffe & coauthors (e.g. Caballero and Jaffe 1993, Jaffe and Trajtenberg 1996, 1999) to control for other factors influencing citations to estimate knowledge flows across institutions
 - Create groups of publications based on:
 - year of publication,
 - organization(s) represented on the publication,
 - country of origin
 - Model flows of knowledge, measured by the probability of citation, across pairs of cited/citing categories:

$$p_{CTD,CTG} = \frac{c_{CTD,CTG}}{(n_{CTD})(n_{CTG})}$$

Results: Pooled

- Article-article citations
 - University articles more likely to be cited and to cite other work
 - Consistent with the idea that most basic research comes from universities
 - Collaborations help expose research partners to each other's research
 - Company collaborations 3% more likely to be cited than universities when including self-citations only
 - Non-company collaborations 2% more likely than universities to cite other work when including self-citations only

Results: Pooled

- Patent-patent citations
 - Government research highly valuable
 - Government patents 13.7% more likely to be cited than university patents
 - Collaborative research enhances the flow of knowledge across institutions
 - Non-company collaboration patents 31% more likely to be cited than university patents (although only 10% significance)
 - Excludes self-citations: not just technology transfer within the group
 - » Similarly, these collaborations aren't more likely to cite other research
 - Rather, these appear to make novel contributions more valuable to future researcher

Results: Pooled

- Patent-article citations
 - Government research remains highly valuable
 - Government articles 14% more likely to be cited by a patent than a university article
 - Universities remain important
 - Cited more frequently than any non-government article
 - Collaborative research exposes research partners to a wider range of knowledge
 - When excluding self-citations, non-company collaborations 60% more likely than university patents to cite other articles

Results: By technology

Article-article citations

- University articles generally most cited for biofuels and solar
 - Company collaborations 10% more likely to be cited for solar
- In contrast, wind appears to be moving towards a more applied stage
 - University research is less important
 - Company (62%) and government (80%) articles most frequently cited for wind
 - Both types of collaborations also highly cited

Patent-patent citations

- Government patents highly cited for biofuels and wind, but not solar
- Private sector patents in biofuels and solar more frequently cited than university patents

Results: Rate of decay and diffusion

Results: Rate of decay and diffusion

- Knowledge flows between articles and patents peak 15 years after article publication
 - Slightly longer than found in studies of other fields, suggesting that energy research may take longer to progress to a commercialized product
 - Branstatter and Ogura (2005) find that patent citations to scientific publications peak about eight years after article publication
 - Veugelers and Wang (2015) note that the time lag between article publication and patent citation is faster in emerging technologies
 - Finardi (2011) finds lags of just 3-4 years for nanotechnology

Implications for energy R&D policy

- Patience is important
 - Lags between funding and publication are long
- Important to include multiple lags in evaluations of public R&D funding
 - Studies using only a single lagged value of government R&D are likely measuring something else
- Government research can also help new technologies overcome roadblocks to commercialization
 - Research on renewable energy sources produced by government institutions has been particularly helpful moving alternative energy research to an applied stage
 - Government articles not more likely to be cited by other articles, but are more likely to be cited by other patents

Thank You!

