Building the Evidence Base for Decision Making in Cancer Genomic Medicine using Comparative Effectiveness Research (CER)

Andrew N. Freedman Clinical and Translational Epidemiology Branch National Cancer Institute

Evidence for Clinical Utility of Molecular Diagnostics in Oncology: A Workshop May 24, 2012

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Outline

- Background
- Identification of the key questions for CER applications in cancer genomics
- General methodological approaches to addressing these key questions using examples
- Future research needs

Background

- Analytic validity and clinical validity is now available for an increasing number of genomic applications
- Clinical Utility is largely unknown for most genomic applications
- Uncertain clinical utility potentially wastes health-care resources and decreases quality through inconsistent or unnecessary use of those tests
- It is important to ensure that clinically valid tests also have high clinical utility before they become widely used

Genomic Predictive Markers of Cancer Treatment Efficacy and Safety

Test/Markers	Drugs	Cancer Outcomes
	In Clinical Use	
HER2/neu	Trastuzumab	Breast Cancer- recurrence/survival
Oncotype Dx	Treatment regimen	Breast Cancer- recurrence/survival
EGFR Mutation	Erlotinib	Lung Cancer- Recurrence/survival
K-ras	Cetuximab, Panitumumab	Colorectal Cancer - recurrence/survival
EML4-ALK mutation	Crizotinib	Lung Cancer- Recurrence/survival
BRAF V600E	Vemurafenib	Melanoma Recurrance/survival
BCR-ABL	Imatinib, Dasatinib, Nilotinib	CML-Response
C-Kit	Imatinib	GIST-Response
TPMT	6-MP, 6-TG	ALL, AML-Toxicity

Febbo et al. J Natl Compr Canc Netw 2011;9:S-1-32

Genomic Predictive Markers of Cancer Treatment Efficacy

Test/Markers	Drugs	Cancer Outcomes
	Emerging Evidence	
MSI and/or MMR	5-FU	Colorectal Cancer- Recurrence/survival
Mammaprint	Treatment regimen	Breast Cancer- recurrence/survival
Oncotype Dx Colon ColoPrint	Treatment Regimen	Colorectal Cancer Recurrence/survival
K-ras mutation	Anti-EGFR therapy	Lung Cancer- recurrence/survival
ERCC1	Cisplatin-based Therapy	Lung Cancer- Recurrence/survival

Comparative Effectiveness Research (CER)

- CER is intended to create evidence for decision making, and to find out "what works" in health care.
- IOM definition: "CER is the generation and synthesis of evidence that compares the benefits and harms of alternative methods to prevent, diagnose, treat, and monitor a clinical condition or to improve the delivery of care. The purpose of CER is to assist consumers, clinicians, purchasers, and policy makers to make informed decisions that will improve health care at both the individual and population levels."
- "Patient-Centered Outcomes Research"

"The Trouble With Averages"

- CER typically focuses on average treatment effects, but...
 - Interventions that yield a significant treatment effect across a study population may be ineffective for some patients and harmful for others
 - Conversely, interventions that may be dismissed as ineffective actually may work for certain subgroups of the population

Cancer Genomic Medicine

Decision-Makers Key Questions for Cancer Genomic Medicine

- 1. Does the genomic application provide correct information? (analytic validity)
- 2. Is there a significant association between the results of the genomic application and clinical phenotype? (clinical validity)
- 3. Does the genomic application provide clinically significant information? (clinical utility)
- 4. Does the genomic application lead to improved patient outcomes as compared with the alternative? (comparison or added clinical value)

Comparative Effectiveness Research (CER) vs. Traditional Studies Of Genomic Tests For Cancer

Feature of research	Comparative effectiveness research	Traditional studies
Priority of study among alternatives	Determined by multiple stakeholders, using criteria such as disease burden or cost, lack of information, variability in care	Opportunity as dictated by expert assessment of emerging technology
Study design	Retrospective or prospective analysis	Retrospective analysis of existing tumor specimens; occasional prospective analysis of observational data
Comparisons	Direct comparisons of new therapy with usual care	Direct comparisons of competing therapies, often not considering usual care
Topics	Prevention, treatment, monitoring, and other broad topics	In most cases, prediction of narrow effects such as serious drug interactions, response to treatment, tumor recurrence
Perspectives	Multiple, including clinician, patient, purchaser, and policy maker	Clinician and patient
Study populations and settings	Representative of clinical practice	Highly selected
Data elements	Patient characteristics, quality of life, safety of treatment, resource use and costs, patients' preferences	Patient characteristics, clinical endpoints
Funding	"Coverage with evidence development" programs, public-private partnerships	Private investors, research grants from federal sources such as the National Institutes of Health

Ramsey SD et al. How comparative effectiveness research can help advance 'personalized medicine' in cancer treatment. *Health Aff (Millwood).* Dec 2011; 30(12):2259-2268.

General Methods for Comparative Effectiveness Research

Evidence Synthesis

- Horizon scanning
 - Searching published and gray literature
 - existing curated databases for emerging genomic applications
- State-of-the-science reviews
 - The NIH State of the Science Consensus Development Conferences
- Identification and prioritization of research gaps
 - Institute of Medicine Consensus Study (e.g. Comparative Effectiveness Research Prioritization)
- Systematic Reviews
 - Evaluation of Genomic Applications in Practice and Prevention Working Group
 - AHRQ's Evidence-based Practice Centers
 - ASCO, NCCN
 - The Cochrane Collaboration , U.S. Preventive Services Task Force
- Health technology assessment
 - Blue Cross and Blue Shield Association Technology Evaluation Center (TEC)

Randomized Clinical Trial (RCT)

- A planned experiment designed to ulletassess the efficacy of a treatment/marker by comparing the outcomes in a group of patients randomized to the treatment/marker with those observed in a comparable group of patients randomized to a control treatment/marker, where patients in both groups are enrolled, treated, and followed over the same time period.
 - Explanatory RCTs
 - Adaptive Clinical Trials
 - Pragmatic clinical trials
 - Cluster randomized trials

In a randomized clinical trial, you will be assigned by chance to either a control group or an investigational group.

H0648g: overall survival (IHC 3+ and taxane subgroup)

OS, overall survival

Smith 2001

Adaptive Clinical Trial- "Learn as you go": One of more decision points are built into trial design for analysis of outcomes and associated patient or disease characteristics to Identify subgroups who are responding favorably.

I-SPY 2 Trial Design

Barker AD, et al. Clin Pharmaco Ther. 2009.

Pragmatic Clinical Trial (PCT)

- Help decision-makers choose between options for care in routine clinical practice
- Have also been called "practical clinical trials," "effectiveness trials," or "large simple trials"
- Provides high quality scientific evidence to support clinical and health policy decisions on a broad range of health outcomes

 Include morbidity/mortality endpoints, QOL, symptom severity, satisfaction, costs, etc.

Tunis et al. Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. *JAMA : the journal of the American Medical Association.* Sep 24 2003;290(12):1624-1632.

Schwartz D, Lellouch J. Explanatory and pragmatic attitudes in therapeutical trials. *Journal of chronic diseases*. Aug 1967;20(8):637-648.

Explanatory vs. Pragmatic Trials

	Explanatory Trial	Pragmatic Trial
Motivation	Regulatory approval for efficacy – can the intervention work?	Formulary approval for effectiveness – does the clinically relevant intervention work in the 'real world'
Setting	'Ideal' (i.e., experimental) setting: usually academic specialists	Normal practice; usually community-based with multiple physician specialties
Participants	Highly restrictive eligibility criteria with high compliance	Broad eligibility criteria that reflect diversity of patients seen in clinical practice; low compliance
Intervention	Strictly enforced fixed regimen with forced titration	Applied flexibly as it would be in normal practice
Comparator	Usually placebo or arbitrarily chosen comparator	Usual care or least expensive/most efficacious
Outcomes	Condition specific, often short tem surrogates or process measures	Comprehensive and relevant; more often long- term to reflect disease natural history and broad range of functional outcomes

Zwarenstein M, et al. Improving the reporting of pragmatic trials: an extension of the CONSORT statement. *BMJ.* 2008;337:a2390. Bombardier C, Maetzel A. Pharmacoeconomic evaluation of new treatments: efficacy versus effectiveness studies? Annals of the rheumatic diseases. Nov 1999;58 Suppl 1:I82-85.

RxPONDER (SWOG S1007)

http://www.swog.org/Visitors/S1007/patients.asp

	Explanatory Trial	Pragmatic Trial	RxPONDER
Motivation	Regulatory approval for efficacy – can the intervention work?	Formulary approval for effectiveness – does the clinically relevant intervention work in the 'real world'	Formulary approval for effectiveness – does the clinically relevant intervention work in the 'real world'
Setting	'Ideal' setting: academic specialists	"Normal" practice setting: community-based with multiple physician specialties	CCOPs, which are reasonably representative of general clinical practice
Participants	Highly restrictive eligibility criteria with high compliance	Broad eligibility criteria that reflect diversity of patients seen in clinical practice	Restrictive: breast cancer [Node- positive (1-3 nodes) HR-positive and HER2-negative] Broad: recruit minorities , all ages, very large study
Intervention	Strictly enforced fixed regimen	Applied flexibly as it would be in normal practice	Simple intervention: chemo decision based on RS
Monitoring	High Intensity	Low Intensity	Moderate to high intensity
Comparator	Usually placebo or chosen comparator	usual care or least expensive/most efficacious	usual care or least expensive/most efficacious
Outcomes	Condition specific, often short tem surrogates	Comprehensive and relevant; more often long-term to reflect disease natural history and broad range of functional outcomes	cut point for RS, disease free survival, QOL, decision making, cost-effectiveness
Zwarenstein M, et al. Improving the reporting of pragmatic trials: an extension of the CONSORT statement. BMJ. 2008;337:a2390.http://www.swog.org/Visitors/S1 ents.aspBombardier C, Maetzel A. Pharmacoeconomic evaluation of new treatments: efficacy versus effectiveness studies? Annals of the rheumatic diseases. Nov 1999;58 Suppl 1:182-85.http://www.swog.org/Visitors/S1 ents.asp			http://www.swog.org/Visitors/S1007/pati ents.asp

* 22 participants were referred for both breast and colorectal cancers; 16 attended RGC and thus contribute two RGC risk assessments

Emery J et al. The GRAIDS Trial: a cluster randomised controlled trial of computer decision support for the management of familial cancer risk in primary care. *British journal of cancer.* Aug 20 2007;97(4):486-493

Observational Studies

Retrospective and prospective cohort design

Registries

- Case-control design
 Administrative databases and EMRs
- Retrospective analysis of biospecimens from RCTs

113 CRC Patients According to KRAS Mutation

Progression-free survival

А Nonmutated Estimated Probability of Survival 1.00 Mutated 0.75 0.50 0.25 P=1.4 10 20 40 60 80 100 0 Time (weeks) Waak 80 No. at risk KRAS nonmutated 77 19 3 KRAS mutated 36 0 в Nonmutated Estimated Probability of Survival 1.00 Mutated 0.75 0.50 0.25 P=.0017 10 20 0 30 Time (months) Months 12 24 No, at risk **KRAS** nonmutated 4 0 KRAS mutated 25 7

Overall survival

Lievre A, et al. J <u>Clin Oncol.</u> 2008

Forest plot of HRs for overall survival comparing KRAS-mutated and wild-type

Study, Year (Reference)			HR (95% CI)
Amado et al, 2008 (14)	-		1.69 (1.21–2.36)
Cappuzzo et al, 2008 (58)	-		1.14 (0.86–1.50)
Freeman et al, 2008 (61)		_	2.00 (1.11–3.60)
Gonçalves et al, 2008 (62)			1.32 (0.62–2.83)
Karapetis et al, 2008 (15)		-	2.08 (1.39–3.12)
Garm Spindler et al, 2009 (67)			1.28 (0.67–2.43)
Jacobs et al, 2009 (68)	∔∎	_	2.00 (1.10–3.63)
Laurent-Puig et al, 2009 (69)	-		1.71 (1.24–2.36)
Sohn et al, 2009 (80)			2.42 (1.25-4.70)
Van Cutsem et al, 2009 (16)	-		1.42 (1.06–1.91)
Graziano et al, 2010 (83)			2.30 (1.43–3.70)
Sartore-Bianchi et al, 2009 (78)			1.72 (1.02–2.90)
Yen et al, 2010 (51)		_	6.76 (3.16–14.48)
Overall (12 = 56%; P = 0.007)			1.79 (1.48–2.17)
	0.5 1 2	5 15	
	HR (95%	6 CI)	
	Better Survival in KRAS Mutant	Better Survival in KRAS Wild-Type	

Kaplan-Meier plots for distant recurrence comparing treatment with tamoxifen (Tam) alone vs. treatment with tamoxifen plus chemotherapy (Tam + chemo)

Paik S, et al. J Clin Oncol. 2006

Tumor Gene Expression and Risk of BC Death

Table 5

Ten-year risk of death in relation to Recurrence Score and tumor size and grade among ER-positive patients, stratified by treatment with tamoxifen

Risk classifier	Cases	Controls	10-Yea	ar risk
			%	95% Cl
Tamoxifen treated				
Recurrence Score (55 cases and 150 controls)				
Low (<18)	29%	63%	2.8	(1.7-3.9)
Intermediate (18–30)	40%	23%	10.7	(6.3–14.9)
High (≥31)	31%	13%	15.5	(7.6–22.8)

Validity: External - Internal

When are RCTs more suitable to address CER GPM questions?

- Decisions require the highest level of certainty
- Detecting small or modest differences in the results of treatment/testing
- Ensure high level of internal validity
 - Control for selection bias, patient compliance and other confounding factors
- Accessible biospecimens are required for all participants
- Require detailed information on outcomes
- Incorporate genomic markers in design
- Complex testing or multi-therapy treatment

When are observational studies more suitable to address CER GPM questions?

- Study populations not represented in clinical trials
 Comorbidities, age, medication
- Larger studies and diverse populations are needed
 rare outcomes or analysis of subgroups
- Need long-term follow-up
- a RCT is not ethical or feasible
- Treatments/testing are used off-label
- Compare outcomes from multiple treatment regimens

When are observational studies more suitable to address CER GPM questions? (Continued)

- Detect larger differences in the results of treatment/testing
- Confirm result from RCTs
- Generate hypotheses to be tested in RCTs
- Study results need to be generalizable
- Study results are needed quickly
- Treatment adherence differs

What are the major concerns about using observational studies to inform clinical utility?

- Poorly designed studies
- Difficulty replicating findings
- Difficulty in obtaining reliable outcome measures
- Bias and confounding

Selection, response, adherence, attrition, misclassification

How can we improve our observational studies to inform clinical utility?

- Poorly designed studies
 - <u>http://www.graceprinciples.org/</u>
 - <u>http://www.ispor.org/workpaper/practices_index.asp</u>
 - ENCePP The European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP[®])
- Difficulty to replicate findings
 - Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
 - Strengthening the Reporting of Genetic Associations (STREGA)
 - Genetic Risk Prediction Studies (GRIPS)

How can we improve our observational studies to inform clinical utility? (Continued)

- Difficulty in obtaining reliable outcome measures
 Validation studies (e.g. chart review)
- Bias and confounding
 - Instrumental variables
 - Propensity score matching
 - Matching and stratification
 - Prior event rate ratio
 - Sensitivity analysis

Decision modeling

 Value of Information analysis/scenerio modeling

• Cost-effectiveness analysis

 Benefit-Risk modeling to facilitate evaluation of indirect evidence

Risk-Benefit Policy Matrix

		Uncertainty	
Risk-Benefit Profile	High	Moderate	Low
Favorable	Use with evidence- development	Consider use in clinical practice	Appropriate for use in clinical practice
Neutral	Do not use, conduct additional research	Use with evidence- development	Consider use in clinical practice
Unfavorable	Do not use, conduct additional research	Do not use	Do not use

Veenstra DL et al. A formal risk-benefit framework for genomic tests: facilitating the appropriate translation of genomics into clinical practice. *Genetics in medicine : official journal of the American College of Medical Genetics.* Nov 2010;12(11):686-693

Stakeholder Engagement

Thariani et al. Prioritization in Comparative Effectiveness Research: The CANCERGEN Exprerience. Med Care 2012 Decision-Makers Key Questions for Cancer Genomic Medicine (Revisited)

- 1. Does the genomic application provide correct information? (analytic validity)
- Is there a significant association between the results of the genomic application and clinical phenotype? (clinical validity)
- 3. Does the genomic application provide clinically significant information? (clinical utility)
- 4. Does the genomic application lead to improved patient outcomes as compared with the alternative? (comparison or added clinical value)

KRAS mutation and anti-EGFR therapy treatment response in mCRC

Analytic Validity

Question	How well can we measure KRAS mutation?
Problem	Test characteristics depend on tumor heterogeneity, sample handling, slide preparation, techniques for tumor enrichment, DNA preparation, assay design and sensitivity
Study Approach	Compare KRAS test results in large multi-center observational study
Results	90% concordance across 5 labs. 10% discordance due to tumor heterogeneity or contamination of the tumor sample with normal tissue
Feigelson HS et al. BMC Resea	arch Notes 2012

KRAS mutation and anti-EGFR therapy treatment response in mCRC

Clinical Validity

Question	Is KRAS mutation associated with treatment response?
Problem	Limited evidence from randomized studies exists. Lack of patient-level data to assess modifiers (i.e. pathologic and prognostic tumor characteristics) of the mutation-by- treatment interaction. Publication bias could be a concern
Study Approach	Systematic review of cohort studies and retrospective analysis of trials
Results	KRAS mutations are consistently associated with reduced overall and progression survival and increased failure rates among patients with mCRC treated with anti-EGFR therapies
Dahabreh IJ et al. Annals of In	iternal Medicine April 2011

KRAS mutation and anti-EGFR therapy treatment response in mCRC

Clinical Utility

Question	What are the benefits and harms of KRAS mutation testing for treatment decisions?
Harms	Potential for anti-EGFR therapy to be effective for some (small %) of patients whose tumors are KRAS mutant
Benefits	Avoiding serious adverse side effects in patients who will not respond to anti-EGFR therapies
	Avoiding use of an expensive treatment for patients who will not benefit from treatment

KRAS mutation and anti-EGFR therapy treatment response in mCRC

Added Clinical Value

Question	Is the use KRAS mutation testing better than the alternative?
Comparator	Anti-EGFR treatment decisions in the absence of knowledge of KRAS mutation status
Study Approach	Observational cohort study pre and post KRAS testing, Prospective RCT?

Genomic Predictive Markers of Cancer Treatment Efficacy and Safety

Markers	Drugs	Studies informing Clinical Utility
In Clinical Use		
HER2/neu	Trastuzumab	Genome-guided RCTs
Oncotype Dx,	Treatment regimen	Retrospective analysis of biospecimens from RCTs, Retrospective Cohort Study
EGFR Mutation	Erlotinib	Prospective Cohort Studies
K-ras	Cetuximab, Panitumumab	Retrospective analysis of biospecimens from RCTs
EML4-ALK mutation	Crizotinib	Genome-guided RCT
BRAF V600E	Vemurafenib	Genome-guided RCT
BCR-ABL	Imatinib, Dasatinib, Nilotinib	RCT
C-Kit	Imatinib	Genome-guided RCT
ΤΡΜΤ	6-MP, 6-TG	Prospective and Retrospective Cohort studies, Case-Control

Need a comprehensive approach to resolve questions about the clinical utility of genomic applications

- Future research must consider more outcome measures, conducted in settings that are relevant to more real-world clinical decisions
- A multitude of stakeholders should have a role in evidence generation
- Consider new strategies involving transformation of the research infrastructure to "learning systems" that allow continual addition to the evidence base.
- Clear priorities for CER must be identified to ensure that limited resources are used to resolve the most compelling questions

Need for an evidentiary framework to clearly define evidence standards for clinical utility

- Recognize that an RCT is not desirable or feasible in every circumstance and high quality observational study designs and evidence of underlying biological mechanisms can contribute to the evidentiary framework.
- Any reforms of the evidentiary framework should uphold rigorous standards existing best research practices
- An evidentiary framework needs to articulate the minimal evidence necessary before genomic clinical application is warranted

Summary

Health policy decisions must take into consideration the clinical context, the type of genomic application, the quality and availability of evidence to assess a *marker's* benefits and risks, and the risk to patients that a wrong decision could pose.

Collaborators

Kaiser Permanente Northwest Katrina A.B. Goddard PhD and Evelyn Whitlock MD

<u>Kaiser Permanente Colorado</u> Heather Spencer Feigelson PhD

<u>University of Virginia</u> William A. Knaus MD

Duke University and the Duke Cancer Institute Gary H. Lyman MD, MPH

National Cancer Institute Sheri D. Schully PhD National Cancer Institute and Centers for Disease Control Muin J. Khoury MD, PhD

Fred Hutchinson Cancer Research Center Scott Ramsey MD, PhD

<u>Center for Medical Technology</u> <u>Policy</u> Sean Tunis MD, MSc

<u>University of Washington</u> David L. Veenstra PharmD, PhD

Genet Med. 2012 Apr 19

NCI-Supported CER in GPM

Center for Comparative Effectiveness Research in Cancer Genomics -CANCERGEN Fred Hutchinson

Comparative Effectiveness in Genomic and Personalized Medicine for Colon Cancer Kaiser Comparative Effectiveness in Genomic Medicine University of Pennsylvania

> Building a Genome Enabled Electronic Medical Record University of Virginia

Programs in Clinical Effectiveness of Cancer Pharmacogenomics Duke University

Clinical Validity and Utility of Genomic Targeted Chemoprevention of PCa *Wake Forest University*

Developing Information Infrastructure Focused on Cancer Comparative Effectiveness Moffitt Cancer Center

Trial Assessing Individualized Options for Treatment for Breast Cancer (TAILORx)

RS: Recurrence score Zujewski JA, Kamin L. *Future Oncol*. 2008.