Indoor Air Quality and Aerosol Transmission Pathways for Viruses

Richard L. Corsi, Ph.D., P.E.

H. Chik M. Erzurumlu Dean

Maseeh College of Engineering & Computer Science Portland State University

Particles as Vehicles for Exposure to SARS-CoV-2

Near Field (close contact)

Large Droplets + Aerosol

Far FieldBackground Aerosol

Evidence of Transmission by Aerosols

- Near field (close contact): aerosols significant
- Asymptomatic spread prevalent (no cough; small particles)
- Detected in particles ≤ 4 µm
- Dense & poorly-ventilated environments

SARS-CoV-2 relatively persistent in aerosols

Inactivation Rates of SARS-CoV-2

•
$$t_{1/2} = 1.1 \text{ hr} \longrightarrow k_v = 0.63/\text{hr}$$

• $\lambda \approx 0.3$ to 12/hr (depending on building)

Sources

- Coughing
- Speaking
- Breathing
- Resuspension
- Flushing

- Still unknown
 - Viral load
 - Infectious fraction

Emissions via Coughing

Lindsley, W.J., et al., J of Occupational and Environmental Hygiene, 9: 443–449 (2012)

- Mean = 75,400 SD = 97,300 / cough
 - Range: 900 302,000 / cough
 - 63% of particle volume ≤ 4 µm (d_a)

Emissions via Speaking

Asadi, S. et al. Scientific Reports, 9:2348 (2019) doi.org/10.1038/s41598-019-38808-z

- Reasonable range = 300 to 3,000/min (some super-emitters to 12K /min)
- Super-emitter: 6 min of speaking loudly ≈ mean emission of single cough
- Breathing ≈ order of magnitude lower than speaking

Screening Model

$$\frac{dCi}{dt} = \frac{Ei}{\forall} - \beta i Ci$$

Particles of diameter i

$$E_i = nE_{c,i} + \alpha_s E_{s,i} + \alpha_b E_{b,i}$$

(cough) (speak) (breathe)

$$\beta i = \lambda + R_{dep,i} + \sum \frac{2iQ_{c,i}}{\forall} + f_{dep,i} \frac{Q_b}{\forall}$$
(Ventilation) (Deposition) (Control) (Inhalation)

Dose_{inhal,i} =
$$C_i$$
 (#/L) x B (L/min) x t (min) x $f_{dep,i}$

- Important to understand magnitudes of variables & factors that influence
- Aerosol = vehicle of SARS-CoV-2 (greater dose; = greater # viruses for i)

Deposition onto Indoor Surfaces

- Range of k_{dep} for 0.4 to 10 µm particles: 0.05 to 7/hr
- Context: λ ≈ (0.3 to 12/hr) fn (type of building)

How far Can Particles Travel?

At air speed of 5 cm/s in free stream

d _a (μm)	V _{TS} (m/s)	k _d (1/hr)	X _{1.5m} (m) -GS	X _{50%} (m) - PF
0.5	7.5E-06	0.05	10000	2500
1	3.0E-05	0.1	2500	1200
5	7.5E-04	1.5	100	80
10	3.0E-03	7	25	20
50	7.5E-02	100	1	1

Particles ≤ 10 µm not substantially removed within 6 ft

Gravitational settling

Modified from Wang, W., et al. Aerosol Sci & Technol, 46:843–851, 2012

Dose Reduction: Engineering Controls

- Increase outdoor air supply rate (100% if possible)
- Minimize or (preferably) eliminate recirculation
 - Effective in-system filtration (e.g., MERV13+)

- Consider portable HEPA filtration (high CADR)
- Consider UltraViolet Germicidal Irradiation (studies needed)

Role of Portable Air Cleaners

EPA.gov

Shaughnessy, R.J., and Sextro, R.G., J of Occupational and Environmental Hygiene, 3: 169–181(2006)

$$C_i = \frac{Ei/\lambda \forall}{1 + \text{Rup, i/}\lambda + 2iQc/\lambda \forall}$$
CADR

Classroom Model

$$\frac{dCi}{dt} = \frac{Ei}{\forall} - \beta i Ci$$

$$E_i = nE_{c,i} + \alpha_s E_{s,i} + \alpha_b E_{b,i}$$

$$(cough) \quad (speak) \quad (breathe)$$

$$\beta_i = \lambda + R_{dep,i} + \sum \frac{2iQ_{c,i}}{\forall} + f_{dep,i} \frac{Q_b}{\forall}$$

$$(Ventilation) \quad (Deposition) \quad (Control) \quad (Inhalation)$$

- Classroom: 100 m² x 2.8 m; 34 students
- Emissions: Infected instructor (super-emitter) 0.5 to 4 µm droplet nuclei
- Ventilation: λ = Q/V Q based on ASHRAE 62.1 (w/ 100% outdoor air)
- Other parameters: Literature

Particles from Infector in Classroom Air

^{*} PAC: HEPA w/ CADR = 300 scfm

Air contaminated at end of lecture (time to 95% reduction = 30 - 100 min)

Pathways & Dose/Student

A: 1/2 ASHRAE

B: ASHRAE

C: 2 x ASHRAE

D: ASHRAE + PAC

Moving Forward

- Viral loads & infectious virus fraction [= fn(d_p)?]
- Dose-response relationship (to help w/ control strategies)
- More field sampling to explore far field potential
 - In-situ sampling in buildings w/ infectors (filter collection)
- Less disciplinary trench digging (interdisciplinary collaboration)
- Apply what we learn to reduce extent of next wave/pandemic

