Role of Clinical Studies for Pets with Naturally Occurring Tumors in Translational Cancer Research: Mechanisms for Comparative Oncology Trials- Single Site Studies

> Cheryl A. London, DVM, PhD Shackelford Professor of Veterinary Medicine The Ohio State University

The Ohio State University

COLLEGE OF VETERINARY MEDICINE

Advantages of single site/limited site clinical trial enrollment

- **1.** Significant commitment from primary PI so typically enthusiastic/rapid enrollment
- 2. Can respond to observations on clinical toxicities and/or observed responses with rapid changes in study protocol
- **3.** Integrity of sample collection and analysis is maintained
- 4. Can flow from healthy to affected dog at same site; observe toxicities first hand prior to treating affected dogs

Drawbacks of single site/limited site clinical trials

- **1.** May not have representative population of patients
 - Purported geographic differences in disease biology
 - Over-represented breeds in specific geographic locations
 Greyhounds with osteosarcoma at OSU
- **2.** Competition for enrollment within single site
 - Multiple studies for lymphoma ongoing simultaneously
- 3. Rapid enrollment can occasionally result in toxicities that are overlooked or not noted until a larger sampling of patients are treated
- 4. Generally challenging to enroll large numbers of patients with a specific cancer in a timely manner
 - Osteosarcoma, transitional cell carcinoma

EXAMPLES

- 1. Ganetespib (HSP90 inhibitor, Synta Pharmaceuticals) pre and post IND
- 2. KTN0158 (humanized KIT mAb, Kolltan Therapeutics) pre IND
- **3.** LY5 (STAT3 inhibitor, OSU College of Pharmacy) pre IND
- 4. RV1001 (PI3K inhibitor, Rhizen Pharmaceuticals) post IND
- 5. KPT335/330 (XPO1 inhibitor, Karyopharm Therapeutics) pre and post IND

Evaluation of HSP90 inhibitor STA-1474 in dogs with cancer

- Ganetespib, (STA-9090, Synta Pharmaceuticals Corp.) is a novel small molecule inhibitor of HSP90 with significant in vitro and in vivo activity at low nM concentrations
- STA-1474 is the highly soluble prodrug of ganetespib
- Phase I study of STA-1474 was performed in dogs with cancer pre-IND submission:
 - Test 2 dosing regimens, full PK in all dogs 1 hr once per week
 - 1 hr twice per week
 - Determine clinical toxicities
 - Establish surrogate biomarkers
 - Provide preliminary evidence of biologic activity

Evaluation of STA-1474 in dogs with cancer: Altered PK associated with objective response

- Only 1/12 dogs in the first treatment group (7-10.25 mg/kg over 1 hr once/wk) experienced an objective response to therapy
- This dog had a drug extravasation that markedly altered the PK of ganetespib

Oral Melanoma

Plasma Conc. of STA-9090 vs Time

Time (h)

STA-1474/ganetespib PK/PD

- Objective responses to therapy were associated with sustained blood levels of ganetespib between 200-600 ng/ml for 8-10 hours
- Subsequent murine modeling confirmed that longer drug exposure was associated with more efficient inhibition of HSP90 activity in tumor cells

Identification of most effective ganetespib treatment regimen

- While STA-1474 is water soluble, ganetespib requires solvent that limits duration of infusion to 3 hrs duration
- Goal of second study was to identify a dosing regimen that most effectively recapitulates the 8 hr infusion protocol with respect to biologic activity and sustained downregulation of HSP90 client proteins: <u>KIT target modulation in dog mast cell tumors</u>
- Dogs with mast cell tumors received one of 4 dosing regimens with equivalent dose intensity across groups:
 - 6 mg/kg 1 hr once per week
 - 6 mg/kg 8 hr once per week
 - 3 mg/kg 1 hr twice per week: Mon/Tue
 - 3 mg/kg 1 hr twice per week: Thu/Mon
- Biopsies performed at 0, 24, and 72 hr post treatment for assessment of KIT phosphorylation and expression

Lessons from ganetespib studies

- Single site phase 1 study permitted rapid change in dosing regimen
- This resulted in identification of a drug exposure/response relationship
- A subsequent clinical trial involving 4 sites defined a PK/PD relationship in a relevant client protein of HSP90; this facilitated subsequent human clinical trials of ganetespib pre and post IND
- Importantly, while the second clinical trial initially involved 4 sites, only 2/4 enrolled cases; the primary site enrolled the majority (20/24) of the cases

KTN0158: from healthy to affected dogs

- KTN0158 is a humanized monoclonal antibody that binds human and canine KIT, but not rodent KIT
- Preclinical studies performed at OSU in healthy dogs to assess the adverse event profile prior to subsequent phase 1 clinical trial in dogs with mast cell tumors to generate data for IND:
 - same PI for both studies facilitated transition from healthy to affected dogs
- Expected toxicities were observed in dogs with tumors, but additional adverse events were noted resulting in a protocol change

KTN0158: from healthy to affected dogs

Objective responses have been observed with a single KTN0158 treatment and there has been unexpected dose dependence

Pre-treatment

This study involved 2 sites (primary site OSU), and again, enrollment was skewed: only 1 of 12 cases was enrolled at the second site

LY5: from healthy to affected dogs

LY5 is an allosteric small molecule inhibitor of STAT3 developed at the College of Pharmacy at OSU

Α.	RH3	0 (IC50=0.52	2μ M)	EW8 (IC50=0.55 µM)			RD	RD2 (IC50=1.39 μM)				
	0 µM	0.5 µM	1 µM	0 µM	0.5 µM	1 µM	0 µM	0.5 µ1	M 1	μМ	•	
	-	-			-		-			-	P-ST/ (Y705	AT3)
				-	-	-	-	-		-	STAT	3
							_	-	-	-	GAPE	он
В.			LY5	+OSM			LY	5+IL-6				
		0 0	SM 1µM	2.5 µM		0 IL	-6 1μM	2.5 µM				
		-		-	P-STAT3	-	-		P-ST/	AT3		
				-	STAT3	Ì		-	STAT	3		
			-		GAPDH		-		GAPE	н		
C.												
	-	LY5+IFN-	Y		LYS	5+IFN-a				LY5	+IL-4	
0) IFN-γ	1µМ 2.5µМ	4	0	lFN-oc 1µM	2.5 µM		0	IL-4	1 µм	2.5µм	
1	-		P-STAT1			-	P-STAT1	Sec. 1	-	-		P-STAT4
C			STAT1				P-STAT2					P-STAT6
			GAPDH	-			GAPDH	-	-	-	-	GAPDH

LY5 inhibits STAT3 phosphorylation in human OSA tumor xenografts

LY5 exhibits good oral bioavailability in dogs

<u>Mouse</u>

PK parameters	IV	IP	PO
Tmax (hr)	0.08	0.08	0.5
Cmax (ng/mL)	547	179	168
AUCall (ng/mL*hr)	374	236	257.9
AUC inf_obs (ng/mL*hr)	376	333	295
F%	100	88.6	78.6

Dog

	Dog	g#1	Dog#2			
Animal ID/Route	IV	PO w/ fast	IV	PO w/ fast		
Dosage (mg/kg)	0.97	0.9	0.97	0.9		
Cmax (nM)	5586	1284	3222	499.7		
AUC _{obs} (nM*hr)	5096	2438	3917	1611		
F _{obs} %	100	51.56	100	44.33		

LY5: from healthy to affected dogs

LY5 has demonstrated activity in mouse models of cancer

- LY5 has good oral bioavailability in dogs
- Future clinical trials in both normal dogs and dogs with cancer/OSA are planned to define:
 - MTD
 - PK/PD relationships
 - Biologic activity
 - Adverse event profile
 - Dosing/regimen

Single site mouse, healthy dog, and affected dog studies will facilitate drug development and will impact the expected submission of IND

RV1001 Phase 1 clinical trial

- RV-1001 is an orally bioavailable inhibitor of PI3K family members
- \succ It has a strong binding affinity towards PI3K δ , binds Val-882
- Highly selective in a 451-kinase panel (1 μM, Kinome Scan, USA)

Phase 1 clinical trial performed in dogs with newly diagnosed and relapsed T or B cell lymphoma:

oral dosing once per day, starting at 10 mg/kg

Response to therapy: Daily dosing

- > Enrollment was rapid, with all cohorts having patients enrolled within 4 weeks
- Grade 3 and 4 hepatotoxicity was noted in <u>all</u> dosing groups typically after 1-3 weeks of drug administration
- Interim PK demonstrated association of hepatotoxicity with high trough blood levels of drug (20-30 μM)

Response to therapy: M-F dosing

- The M-F dosing regimen was well tolerated by nearly all dogs; hepatotoxicity occurred in only two patients
- Response to therapy was noted at both 15 and 25 mg/kg dose levels

Pharmacokinetics and pharmacodynamics of RV1001 in dogs with NHL

Lessons learned from RV1001 clinical trial

- The rapid enrollment resulted in the occurrence of hepatotoxicity in all dosing groups
- However, a drug exposure/toxicity relationship was identified resulting in a change in dosing regimen that markedly reduced the toxicity while maintaining response to therapy
- Two sites were used for this study and again, the primary site (OSU) enrolled the majority of the cases (17/21)
 - no naive lymphoma cases were enrolled at the second site
 - lack of enthusiasm for not using standard of care treatment up front

Lessons learned from RV1001 clinical trial

Planned exceptional responder WGS to identify correlates of response, particularly in T cell lymphoma patients

Evaluation of KPT-335, a novel XPO1 inhibitor, in dogs with lymphoma

- Cancer cells must inactivate their Tumor Suppressor Proteins (TSPs) in order to perpetuate the neoplastic phenotype
- Most TSPs function in the nucleus; nuclear export functionally extinguishes their tumor suppressing activity and XPO1 is the <u>exclusive</u> nuclear exporter of most TSPs
- XPO1 blockade with KPT330/KPT335 leads to nuclear retention/activation of <u>multiple</u> TSPs resulting in apoptosis of tumor cells while normal cells undergo cell cycle arrest

Lessons learned from phase 1 and 2 studies with KPT-335

- Clinical trials of KPT-335 were performed in dogs with lymphoma in support of the compound moving forward in people (KPT-330) to assist with identification of adverse event profile and dose/regimen
- The phase 1 study performed at 3 sites initially used MTh dosing schedule but a small number of dogs (n=8) received MWF dosing which was thought to be well tolerated
- The phase 2 study in dogs started with the MWF dosing, that, when expanded to a larger cohort was found to be poorly tolerated, resulting in a regimen change (MTh) during the study
- Subsequent work in people with KPT-330 used canine data to set drug regimen and supportive care protocols to address toxicities

Summary

- Single site clinical trials in dogs with spontaneous cancer often have several advantages including:
 - High commitment from PI resulting in rapid enrollment
 - Ability to be flexible in protocol alteration when clinical observations dictate study changes
- However, they sometimes introduce biases that can potentially affect study outcomes:
 - Inadequate representation of breeds
 - Underrepresentation of particular adverse events
- For phase 1 single site clinical trials to be effective, support from an organized and well-staffed clinical trials unit is essential
 - Manage patient workflow and ensure IACUC and GCP compliance
 - Support tissue and blood sampling, which can be quite involved
 - Interface with sponsors to provide timely updates/enact protocol changes

Acknowledgements

The Ohio State University

- Sarah Rippy
- Heather Gardner
- Luis Feo Bernabe
- Roberta Portela
- Misty Bear
- CVM Clinical Trials Office
- Chenglong Li, College of Pharmacy

New England Vet Oncology Group

- Kim Cronin
- Andy Abbo

University of Minnesota

- Antonella Borghatti
- Mike Henson
- Jaime Modiano

University of Missouri

- Sandra Axiak-Bechtel
- Kim Selting

The Veterinary Cancer Center

• Gerald Post

Rhizen/Incozen

- Kumar V. Penmetsa
- Srikant Viswanadha
- Swaroop Vakkalanka

Synta Pharmaceuticals

- Kumar V. Penmetsa
- Srikant Viswanadha
- Swaroop Vakkalanka

Karyopharm Therapeutics

- Dilara McCauly
- Sharon Shacham
- Michael Kauffman

Kolltan Pharmaceuticals

• Rich Gedrich

