## Personalized Therapy for Advanced NSCLC: Lessons Learned from BATTLE

### Roy S. Herbst, MD, PhD Chief of Medical Oncology Associate Cancer Center Director for Translational Research

### June 14, 2011



A Comprehensive Cancer Center Designated by the National Cancer Institute



# Multiple Pathways of Lung Adenocarcinoma Pathogenesis ("Driver Mutations")



Adapted from Ding et al, Nature 455:1069, 2008

# Never Smoking 50yo Woman Treated with Single Agent Erlotinib as First Line Therapy for NSCLC

#### (Deletion in Exon 19)

10-14% of US patients





#### August 2005

#### November 2005

### Response after 40 days with Crizotinib (PF-02341066): *EML4-ALK* Fusion Gene



**Baseline** 

40 days after PF-02341066

# **Natural History of Lung Cancer**



Infrequent

Frequent

**Available** 

Adapted from Herbst et al, N Engl J Med 359:1367, 2008

Rare

## What is BATTLE? <u>Biomarker-based Approaches of Targeted Therapy</u> for <u>Lung Cancer Elimination</u>

- Platform for integrated translational research
  - Clinical trial program
  - Novel trial design
  - Biomarker discovery
- Scientific Hypotheses
  - Real time biopsies are possible to more accurately reflect aberrant signaling pathways of lung cancer
  - Matching targeted agents with abnormal pathways will improve disease control in lung cancer patients
  - 8-week disease control is an acceptable surrogate for efficacy in patients with pretreated lung cancer

# **BATTLE Eligibility Criteria**

- 2<sup>nd</sup> + Line non-small cell lung cancer
  - Heavily treated population
- Adequate performance status
   ECOG PS 0-2
- Biopsy-amenable disease
  - Required 2 fresh core biopsies
- Stable brain metastases allowed

# **BATTLE Schema**

### **Umbrella Protocol**



#### Primary end point: 8 week Disease Control (DC)

# **Bayesian Adaptive Randomization:**

- More patients are assigned to more effective therapies
- Based on accumulating patient data
- We learn as we go!
- Success dependent on good biomarkers guiding assignments to good treatment options

Example of Adaptive Design Models After Data in K-ras, B-raf Marker Group

#### ER: Patient Number: 0



# BATTLE Patient Evaluation Schema



## BATTLE: Tissue Specimens for Biomarker Analysis - Core Needle Biopsy (CNB), N=324

#### Adequate Biopsies:

### <u>N = 270 (83%)</u>



### **Inadequate Biopsies:**





# Individual Biomarkers for Response and Resistance to Targeted Treatment: Exploratory Analysis

| Drug Treatment            | Biomarker                 | P-value | DC       |
|---------------------------|---------------------------|---------|----------|
| Erlotinib                 | EGFR mutation             | 0.04    | Improved |
| Vandetanib                | High VEGFR-2 expression   | 0.05    | Improved |
| Erlotinib +<br>Bexarotene | High Cyclin D1 expression | 0.001   | Improved |
|                           | EGFR FISH Amp             | 0.006   | Improved |
| Sorafenib                 | EGFR mutation             | 0.012   | Worse    |
|                           | EGFR high polysomy        | 0.048   | Worse    |

# **BATTLE Trial: Discovery**

 Fresh frozen tissue specimens: mRNA profiling (Affymetrix) and Proteomic RPPA

**CNB - Frozen** 

#### **mRNA** Profiling



**Squamous Cell Carcinoma** 

5-Gene Erlotonib Signature

# EGFR and KRAS Mutations: Novel Discovery Findings



### **Gene Signature Development from the BATTLE-1 Trial**



Heymach al, AACR 2011

#### **BATTLE-1 Progression Free Survival**



 smokers
 Cys (50%), Asp (21%), Val (20%), Arg (4%)

 never-smokers
 Asp (83%)

 Colon
 Cys (8%), Asp (50%), Val (28%), Arg (4%)

#### Microarray data from patients treated in BATTLE-1 trial

Clustering analysis of genes which most accurately define the differences between of two mut-KRas groups



Ihle et al, AACR 2011



## Acknowledgements

Edward Kim Waun Ki Hong J. Jack Lee Ignacio Wistuba Scott Lippman Anne Tsao George Blumenschein Fadlo Khuri Li Mao Bruce Johnson Hai Tran John Heymach

Christine Alden Suzanne Davis Suyu Liu Jeffrey Lewis Ximing Tang David Stewart Merrill Kies Marshall Hicks Sanjay Gupta Mellanie Price Jeanne Riddle Carmen Behrens Dept. Thoracic/HN Medical Oncology

William William Jeremy Erasmus Jennifer Ferguson James Hall Donald Berry James Abbruzzese Gabriel Hortobagyi Jonathan Kurie Frank Fossella Charles Lu Ralph Zinner Daniel Karp V. Papadimitrakopoulou

Bonnie Glisson Kathy Pisters Faye Johnson **Beverly Peeples** Alda Tam Courtney Tyne Carmen Martinez Ganene Steinhaus Linda Harrington Pharmacists APNs

# BATTLE-2 Lessons Learned: Building On Past Experience

- Attempt to use more specific targeted drugs
- Attack more novel targets
- Drug Combinations
- Avoid biomarker grouping
- Selection and validation of novelme predictive biomarkers in real time
- Collaboration with Merck, AstraZeneca and Bayer/Onyx

### **Pathways Targeted IN BATTLE-2**



# Combination Treatment with MEK and AKT inhibitors





#### **MDACC-AZ Alliance**

Meng J et al.One , 2010 Tolcher et al, ASCO 2011

#### A phase I dose escalation study of oral MK-2206 (allosteric AKT inhibitor) with oral selumetinib (AZD6244; ARRY-142866) (MEK inhibitor) in patients with advanced or metastatic solid tumors. Tolcher AW et al, ASCO 2011, abstr#77652, NCT01021748



### **NSCLC KRAS Mutant, PR after Course 2**

# **BATTLE-2 Schema**



### **Discovery Markers:**

- Protein expression (IHC): FOXO3A, nuclear EGFR, p-AKT (Ser473), PTEN, HIF-1α, LKB1
- Mutation analysis (Sequenom): PI3KCA, BRAF, AKT1, HRAS, NRAS, MAP2K1 (MEK1), MET, CTNNB1, STK11 (LKB1)
- mRNA pathways activation signatures: Affymetrix®
  - BATTLE-1: WT-*EGFR*-Erlotinib, EMT, and Sorafenib
  - BATTLE-2: new "discovery" signatures
- Protein profiling RPPA (n=174)

# **BATTLE-2 Team**

























#### BATTLE-2 1: Personalizing NSCLC Therapy





#### **Challenges for Personalized Therapy**

Requires significant resources

- Multidisciplinary personnel
  - Medical/surgical oncologists
  - Interventional radiology
  - Research nursing personnel
  - Tissue/serum bank personnel
- Infrastructure

Molecular/clinical pathologists Biostatistics/bioinformatics Genomic and Proteomic Lab

- Pathology lab for biomarker analysis and assay development
- Funding: Estimated >\$20,000 per pt for biopsy-driven trials
- Integration between research and diagnostic CLIA-certified labs (need to develop new CLIA tests)
- Academic recognition of team effort
- Collaboration between academia and industry
- Regulatory Challenges