The National Academies of SCIENCES ENGINEERING MEDICINE

Genomic Surveillance and Epidemiology

Forum on Microbial Threats Workshop

Marin Talbot Brewer

Fungal Biology Group and Department of Plant Pathology University of Georgia, Athens, USA

🈏 @r

@marintalbrew

GEORGIA

Evidence ARAf infections in humans come from the environment

- 1. azole naïve patients have pan-azole resistant infections
- 2. pan-ARAf with same TR resistance detected worldwide in humans and the environment
- 3. human and environmental ARAf isolates with TR alleles share multilocus genotypes and nearly identical WGS genotypes

Which direction are ARAf moving?

Contribution of azoles in wood preservation and topical residues?

Burks et al. 2021. PLOS Pathogens

Is ARAf abundant in agricultural environments in the southeastern US?

Collected over 700 *A. fumigatus* from 50 agricultural sites in Georgia and Florida, USA

Soil and plant debris from fields and orchards with peanuts, grapes, pecan, apples, strawberries, tomatoes, and oranges; compost; and debris from pecan processing

Michelle Momany

Cross resistance of tebuconazole-resistant Aspergillus fumigatus to antifungal drugs

Minimum inhibitory concentrations (MIC) based on broth microdilution assay

Tebuconazole-resistant *A. fumigatus* strains (n = 172) isolated from agricultural environments in the southeastern U.S. where azole fungicides were applied. Resistance is defined as final drug concentration $\ge 2 \ \mu g/mL$ or $\ge 0.5 \ \mu g/mL$.

	Final Drug Concentration (µg/mL)								
Azole	>16	16	8	4	2	1	0.5	0.25	<0.25
Tebuconazole	11	1		1	85	68	6		
Itraconazole					11	140	21		
Voriconazole	12					1	81	72	6
Posaconazole						15	93	58	6

What is the mechanism of resistance?

12 pan-ARAf with TR₄₆/Y121F/T289A from compost pile and pecan debris.

Do azole-resistant *Aspergillus fumigatus* (ARAf) show signatures of agricultural origins?

Are azole-resistant clinical and agricultural isolates resistant to other fungicide classes?

QoIs (strobilurins) are not used to treat humans

Qol resistant = G143A in *CytB*

Scan genomes of environmental and human ARAf isolates

benzimidazole resistant = mutations in *BenA* (tubulin)

SDHI resistant = mutations in *Sdh* genes

Earl Kang

Pan-ARAf are multifungicide resistant!

Isolates	Source	Pan-AR <i>Af</i>	Qol resistance	benzimidazole	SDHI resistance
		Cyp51	CytB	resistance BenA	SdhB
A1163	Human	WT	WT	WT	WT

All azole-sensitive environmental and clinical isolates were WT for CytB, BenA, SdhB

Environmental and clinical isolates are multifungicide-resistant

environmental clinical azole resistant pan-azole resistant (non-TR) (TR-based) benzimidazole Qol resistant resistant **SDHI** resistant

This is occurring in a single clade of *Aspergillus fumigatus*

Environmental and clinical isolates of pan-ARAf are multifungicide-resistant

- Many pan-ARAf resistant to benzimidazoles
- Most pan-ARAf resistant to Qols
- Few pan-ARAf resistant to SDHI

- Multifungicide-resistant *A. fumigatus* in environment and clinic
- Multifungicide-resistant isolates geographically widespread and in single clade
- Exclusively agricultural fungicide-resistance markers (*cytB* G143A and *sdhB* H270Y) in pan-ARAf isolates from patients further supports an agricultural origin of pan-azole resistance

Surveillance of *Aspergillus fumigatus* in East and West Coast agricultural environments

Sampled soil and debris from 52 sites from the East and West Coasts in 2018 and 2019

- Tulip, hemp, wheat, apple, grape, herbs, flowers, brassica, cucurbit, peanut, peach, corn, and soybean
- Organic farm soil and compost from GA used for comparison
- 727 isolates, screened on TEB- and ITC-amended media followed by by broth microdilution assay

Cross resistance of tebuconazole-resistant Aspergillus fumigatus to antifungal drugs

Minimum inhibitory concentrations (MIC) based on broth microdilution assay

Teb- and Itra-resistant *A. fumigatus* strains (n = 160) isolated from agricultural environments on the East and West Coasts where azole fungicides were applied. Resistance is defined as final drug concentration $\ge 2 \ \mu g/mL$ or $\ge 0.5 \ \mu g/mL$.

	Final Drug Concentration (µg/mL)								
Azole	>16	16	8	4	2	1	0.5	0.25	<0.25
Tebuconazole	15	13	11	26	78	17			
Itraconazole	11	5	3	7	44	71	19		
Voriconazole	8	1		18	6	23	89	15	
Posaconazole					2	41	68	24	25

What is the mechanism of resistance?

~20 pan-ARAf with TR₄₆/Y121F/T289A or TR₃₄/L98H from grape, wheat, herbs, peach, tulips, compost; WGS of 135 strains

Are ARAf in our food supply or plant-based retail products?

• Samples gathered from retail stores

Product	Location of Origin
Grape	California, USA
Almond	California, USA
Peanut	North Carolina, USA
Pecan	Texas, Georgia, Unknown
Apple	Washington, New York, USA
Compost	Unknown, USA
Soil	Unknown, USA, Canada
Flower	The Netherlands, USA,
bulbs	Unknown, Costa Rica, China

Caroline Burks

Over 500 *A. fumigatus* isolates screened

Draduata	Total	Growth on sele	Selected for		
Products	Isolates	Tebuconazole	Itraconazole	MIC	
Peanut	147	0	33	33	
Compost	133	35	76	44	
Flower Bulb	109	42	51	20	
Soil	85	7	26	17	
Grape	35	0	0	8	
Pecan	12	1	0	6	
Almond	2	0	0	2	
Apple	2	0	0	0	
Total	525	85	186	130	

Diverse azole-resistance phenotypes

Resistance classifications:

- **Azole-sensitive**: not resistant to any azole tested
- **TEB-resistant**: resistant to only TEB
- Azole-resistant: resistant to only 1 medical azole; may or may not be resistant to TEB
- **Pan-azole-resistant**: resistant to more than 1 medical azole and TEB

Diverse *cyp51A* genotypes

TR ₃₄	TR ₃₄ /L98H
TR ₄₆	TR ₄₆ /Y121F/T289A
Туре 1	T248N/E255D
Туре 2	Y46F/V172M/I242V/T248N/E255D/K427E
Туре 3	Y46F/V172M/T248N/E255D/K427E
WT	WT
Other	A9T/Y46F/V172M/T248N/E255D/K427E V172M/T248N/E255D V172M/T248N/E255D/K427E W415G Y46F/H147Y/V172M/T248N/E255D/K427E Y46F/V172I/T248N/E255D/K427E

Association of resistance phenotypes and Cyp51A genotype

Azole-Sensitive TEB-Resistant Pan-Azole-Resistant Azole-Resistant

Pan-azole-resistant isolates associated with lawn products

Lawn Product Food Product

How are these isolates related to *A. fumigatus* from agricultural and patient environments?

Cluster 6 is pan-azole-resistant with TR alleles

Conclusions: ARAf in our food supply and plantbased retail products

- Pan-azole-resistance in commercial compost, soil, peanut, and flower bulbs
- Isolates with TR₃₄/L98H, TR₄₆/Y121F/T289A, Y46F/V172M/T248N/E255D/K427E, and Y46F/H147Y/V172M/T248N/E255D/K427E alleles are pan-azole resistant
 - non-*cyp51A*-based resistance mechanism?
- *Afum* populations in US are genetically structured
- Lawn and garden products contain the most pan-azole-resistant isolates
- Azole residue profiling of substrates with high levels of ARAf
- Compiling environmental genomes with publicly available ARAf genomes from patients in USA and elsewhere to find shared genotypes

Acknowledgements

Current & Past Lab Members

Caroline BurksAlexandria DarbyLuisa Gómez LondoñoTatyanah TolleyLeilani SumabatCaitlin SettleBrandon MangumNatalie MillerTina MelieDouglas Vines

Momany Aspergillus Lab - UGA

Michelle Momany Earl Kang Brandi Celia Brent Shuman Justina Stanislaw

And to many who helped us sample field sites or sent us soil and plant debris samples from around the US!!!!

The National Academies of

SCIENCES ENGINEERING MEDICINE

Brewer Mycology Lab

