General Comments on TDA/DAS

V. Joseph Hotz

Duke University

CNSTAT Workshop on Disclosure Avoidance in DHC June 21, 2022

My Remarks Today

- I haven't had time to adequately assess Michael Hawes's presentation slides, given their (necessary) late arrival to me.
- I will offer some *general comments* less directly responsive to Michael's presentation – about *TDA for 2020 Census DHC* & *its DP underpinnings*.
- I will draw on the following:
 - JASON (2020), Formal Privacy Methods for the 2020 Census (April).
 - JASON (2022), JASON (2022), <u>Formal Consistency of Data Products and Formal Privacy</u> <u>Methods for the 2020 Census</u> (January).
 - boyd & Sarathy, "Differential Perspectives: Epistemic Disconnects Surrounding the US Census Bureau's Use of Differential Privacy," forthcoming in *Harvard Data Science Review*.
 - Hotz & Salvo, "A Chronicle of the Application of Differential Privacy to 2020 Census," forthcoming in *Harvard Data Science Review*.
 - Hotz, Bollinger, Komarova, Manski, Moffitt, Nekipelov, Sojourner & Spencer, "Balancing Privacy and Usability in the Federal Statistical System," forthcoming in *Proceedings of the National Academy of Sciences*.

Giving Credit to Census Bureau

- There is *clear evidence* that *TDA improved* from Oct. 2019 to March 2022 Versions!
- Changes included:
 - Move from TDA based on "pure DP" with Laplace Mechanism to "Zero Concentrated DP" (zCDP) with Gaussian mechanism
 - Move to Optimized Geographic Spine
 - Better handling of Post-Processing constraints (more below)
- They improved *accuracy* of *many statistics* in both PL and DHC data – JASON Report (2022).
- Much of this, although not all, was in *response to input from user communities*.

Some Remaining Issues

- Synthetic Microdata Step of TDA (see next slide).
 - Due to inherited *production system* for data products, TDA is required to produce *synthetic microdata* file in same form as Census Edited File (CEF)
 - JASON (2022) argues this step wasn't needed, may have introduced additional errors & certainly *added to complexity* of TDA
 - I understand this won't change for 2020 Census data, but...
 - It would be good to assess & report on its its consequences
 - More importantly, this step needs to be *eliminated* for 2030 Census & other data products.

The TopDown Algorithm

For complete details see: Abowd, J., Ashmead, R., Cumings-Menon, R., Garfinkel, S., Heineck, M., Heiss, C., Johns, R., Kifer, D., Leclerc, P., Machanavajjhala, A., Moran, B., Sexton, W., Spence, M., & Zhuravlev, P. (2022). The 2020 Census Disclosure Avoidance System TopDown Algorithm. *Harvard Data Science Review*. (June) <u>https://doi.org/10.1162/99608f92.529e3cb9</u>

Some Remaining Issues

- Imposing constraints in TDA
 - This the *post processing* step in the TDA (next slide).
 - Post-processing within TDA was *improved*, *but issues remain*.
 - Evidence suggested this imposed additional errors/inaccuracies in TDA processing. (JASON, 2022)
 - Important to *explore other ways to impose constraints* in advance of 2030 Census & other Census products. (Wang & Reiter, 2021)
 - Important to provide more information to users about uncertainties post processing imposed on data (more below).

The TopDown Algorithm

For complete details see: Abowd, J., Ashmead, R., Cumings-Menon, R., Garfinkel, S., Heineck, M., Heiss, C., Johns, R., Kifer, D., Leclerc, P., Machanavajjhala, A., Moran, B., Sexton, W., Spence, M., & Zhuravlev, P. (2022). The 2020 Census Disclosure Avoidance System TopDown Algorithm. *Harvard Data Science Review*. (June) <u>https://doi.org/10.1162/99608f92.529e3cb9</u>

Some Remaining Issues

- Understanding sources of uncertainty in data
 - Important to understand contributions of components of TDA to uncertainty (margins of error) in DHC & other data products.
 - *Noise injection* based on DP criterion is *relatively straightforward* & *transparent*.
 - Uncertainties due to post-processing & synthetic microdata step are not!
 - But also *essential* for Census to provide *more full accounting* of *other non-sampling sources of error/uncertainty* and soon! JASON (2022); boyd & Sarathy (2022)
 - Users will need this to make informed & effective use of data.
 - Software & documentation will need to be developed & made known & available to users. JASON (2022).
 - Related point: as part of this, Census needs to either release noisy measurements file or close proximity to it. – JASON (2022) & others.

Communication, Communication, Communication!

- Essential for Census to improve communication about DAS/TDA for all levels of users
 - This is *really essential* on multiple levels:
 - Essential for users & public other than CS experts to better understand Census's DAS.
 - Deal with *misconceptions* that are replete & need to be addressed.
 - Clearer & more transparent explanations of DAS/TDA including what it did & didn't do – will help users to make more effective use of DHC, DDHC, other Census products.
 - See JASON (2022), boyd & Sarathy (2022), among others.

- Following slides draw on:
 - Hotz, V.J., C. Bollinger, T. Komarova, C.F. Manski, R.A., Moffitt, D. Nekipelov, A. Sojourner & B.D. Spencer, "Balancing Privacy and Usability in the Federal Statistical System," forthcoming in Proceedings of the National Academy of Sciences.
 - Hotz, V.J. & J.J. Salvo, "A Chronicle of the Application of Differential Privacy to 2020 Census," forthcoming in *Harvard Data Science Review*.

• Absolute Disclosure Risk:

 $\Pr(J = j, Y_j | D^*, A)$

where J is target individual in an intruder's information set, A;
j is individual in released data set, D*;
D is confidential data set;
Y_i is true value of j's (sensitive) data in D;

• Using Bayes Rule:

 $\Pr(J = j, Y_j | D^*, A) = [\Pr(D^* | J = j, Y_j, A) / \Pr(D^* | A)] \Pr(J = j, Y_j | A)$

where $\Pr(J = j, Y_j | A)$ is *intruder's prior* about *j* being *J* & her data being Y_j , **based on just intruder's info**, *A*, and,

$$\Pr(D^*|J=j,Y_j,A)/\Pr(D^*|A) = \Pr(J=j,Y_j|D^*,A)/\Pr(J=j,Y_j|A)$$

where RHS (blue) is **Relative Disclosure Risk**, i.e., **increase** in (or **incremental**) **disclosure risk from releasing** D^* .

- Consider analogy to mortality risks from diseases/health conditions:
 - Epidemiological studies often focus on *relative risks* of *dying* from *one disease/condition vs. another*.
 - These risks may be *easier to estimate*, as they *abstract from differences* in individuals' *underlying health conditions* (their *prior risks*), which are harder to adequately measure.
 - But most individuals & their health care providers care about absolute risk of their dying from disease/condition they have.
 - Individuals may not worry about even a large relative increase in risk of dying from condition if they are in "good health."
 - But, individuals may worry a lot about even a small relative increase in risk of dying from condition if they aren't in good health.

- Case of privacy loss due to a data release.
 - One can argue that *individuals in confidential data set* & maybe stat agencies – *may* (*should*) *care* about *absolute risk of disclosure* from *releasing their data*.
 - Individuals may care a lot about even small relative increase in disclosure risk due to data release if prior prob of disclosure is high, all else equal.
 - May not be bothered by even large relative increase in disclosure risk due to date release if prior prob of disclosure risk is low.

Two Observations concerning Disclosure Risks from Data Releases

- One can show (Gong & Meng, 2020*, among others) that DP criterion – and DP-based DASs – bound relative disclosure risks, not absolute ones.
 - Rationale for DP focus on relative risks: Serious challenges to quantifying or knowing what information potential intruders may know.
 - DP-based mechanisms address *worst-case scenarios*.
 - And, importantly, DP-mechanisms can quantify and **"guarantee"** control over the *relative increase in disclosure risks* from data releases in *transparent way*.

*Gong, R. and X.-L. Meng. 2020. "Congenial Differential Privacy under Mandated Disclosure," *Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference*. Virtual Event, USA: Association for Computing Machinery, 59–70.

Two Observations concerning Disclosure Risks from Data Releases

- But, there are "risks" to not paying more attention to absolute disclosure risks in designing DAS for data releases:
 - Will have *harder time communicating disclosure risks individuals do face*.
 - May have *harder time complying with privacy protection mandates* (Title 13 & 26).
 - And, not paying attention to absolute disclosure risks will limit:
 - a) assessing extent of these risks, e.g., doing further reconstruction and re-identification assessments for 2020 Census data;
 - *b)* assessing how magnitudes of risks differ across groups & types of information;
 - *c) Improving* our *understanding which external data* (priors) *contribute* to *risks of disclosure*.

Thanks for Listening!