Exposure to Air Pollution and Risk of Alzheimer's Disease

Andrew Petkus, Ph.D.

Assistant Professor of Clinical Neurology

University of Southern California

Email: petkus@usc.edu

Conceptual diagram of air pollution \rightarrow Alzheimer's disease

Credit: Jiu-Chiuan Chen

Accumulating evidence that exposure to air pollution is associated with increased risk of dementia

Peters et al. (2019) Journal of Alzheimer's Disease

Air pollution is associated with declines in episodic memory in individuals without dementia

Population Characteristics	Exposure	Association
Weuve et al., 2012 USA	Spatiotemporal GAM: PM _{2.5} ; PM _{2.5-10} ; PM ₁₀	-PM _{2.5-10} and PM ₁₀ since 1988 \rightarrow 2-year \downarrow VM
Tonne et al., 2014 London	Dispersion model: PM _{2.5} ; PM ₁₀	-No significant association with VM level at W2 -PM _{2.5} and PM ₁₀ at 4 years prior \rightarrow 5-year \downarrow VM
Kulick et al., 2020 (EnvInt) NYC	Regionalized Universal Kriging: PM ₁₀ ; PM _{2.5} ; NO ₂	-PM ₁₀ ; PM _{2.5} ; NO ₂ $\rightarrow \downarrow$ EM over time -Age _(<75, ≥75) X [PM ₁₀ ; PM _{2.5} ; NO ₂] \rightarrow decline greater in ≥75 (interaction p<0.001)
Kulick et al., 2020 (Neurology) NYC	Regionalized Universal Kriging: PM ₁₀ ; PM _{2.5} ; NO ₂	 - PM₁₀; PM_{2.5}; NO₂ → lower EM level at baseline - PM₁₀; PM_{2.5}; NO₂ → ↓ EM over time - No association of distance to major roadway with EM level or decline
Petkus et al., 2020 USA	Spatiotemporal BME: PM _{2.5}	$PM_{2.5} \rightarrow \downarrow$ immediate free recall; delayed free recall
Younan et al., 2020 USA	Spatiotemporal BME: PM _{2.5}	$PM_{2.5} \rightarrow \downarrow$ immediate recall (but not level) No association with delayed recall level or decline
		Credit: Diana Younan, Ph.D.

Heterogeneity of exposure effect on aspects of episodic memory

Petkus et al. (2020) Environment International

Alzheimer's disease atrophy first occurs in the medial temporal lobe

Jagust (2018) Nat Rev Neuroscience

Late-life air pollution exposure and structural MRI

	WMH/ SVID	Infarct/ MB	Hippocampal volume
Semmens, 2012	↑ _{PM10;} ↑ _{NO2}	↓ _{PM10}	-
Wilker et al., 2015	↑distance (?)	↑ _{PM2.5}	X
Chen et al., 2015	X	-	X
Wilker et al., 2016	↓PM _{2.5}	X	-
Casanova et al., 2016	-	-	X
Kulick et al., 2017	X	X	-
Power et al., 2018	X	X	X
Hedges et al., 2019	-	-	↓ _{PM2.5} (left) Credit: □

Alzheimer's disease pattern similarity (AD-PS) to quantify Alzheimer's disease grey matter atrophy

Casanova et al., 2018

Alzheimer's Disease Pattern Similarity (AD-PS) score and late-life exposure to $PM_{2.5}$

- Women exposed to one interquartile increase in PM_{2.5} for the 3-years before the first MRI had larger grey matter atrophy in areas of the brain impacted in AD
- Effect similar to 24% increase in dementia risk

Credit: Jiu-Chiuan Chen

Grey matter atrophy in brain areas implicated in AD partially mediates associations between PM_{2.5} and episodic memory decline

Conceptual diagram of air pollution \rightarrow Alzheimer's disease

Heart failure and enhanced associated between pollution and dementia

3

HR per increase of .88 μ g/m³ in PM_{2.5} = 1.54

A Particulate matter no greater than 2.5 µm

	Disease	HR (95% CI)	Lower Risk of Dementia	Higher Risk of Dementia
-	Atrial fibrillation ^a		_	1 1 1 1
	Present	1.60 (1.21-2.13)		
	Absent	1.50 (1.29-1.74)		
	Heart failure ^b			
	Present	1.93 (1.54-2.43)		
	Absent	1.40 (1.19-1.64)		
	lschemic heart diseas	ec		
	Present	1.67 (1.32-2.12)		
	Absent	1.48 (1.27-1.73)		
	Stroke ^d			1
	Present	1.41 (1.07-1.85)		
	Absent	1.56 (1.34-1.81)		
				, 1 1 1
			0.5	1 1
			Н	R (95% CI)

HR per increase of 8.35 μ g/m³ in NO_x = 1.14

B Nitrogen oxide

Grande et al., 2020 JAMA Neurology

Continuum of Alzheimer's Disease

Aisen et al. (2017) Alzheimer's Research and Therapy

Acknowledgments

• USC Collaborators

- Jiu-Chiuan Chen, M.D., ScD
- Diana Younan, Ph.D.
- Xinhui Wang, Ph.D.
- Margaret Gatz, Ph.D.
- Helena Chui, M.D.
- Joshua Millstein, Ph.D.
- Contact Info
 - Andrew Petkus
 - Petkus@usc.edu
 - Phone: 323-442-8050