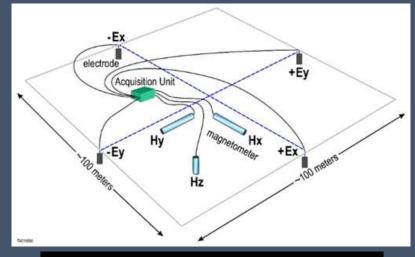

Lunar Interior Temperature and Materials Suite (LITMS) *Testing the thermal evolution, differentiation, and asymmetry of the Moon*

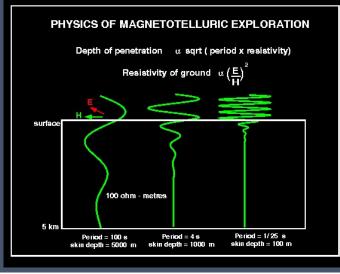
Robert Grimm Southwest Research Institute

Seiichi Nagihara Texas Tech University

Planetary Science Decadal Survey Mercury & Moon, June, 2021

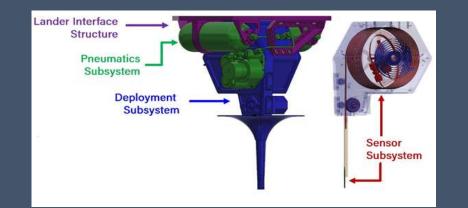
LITMS

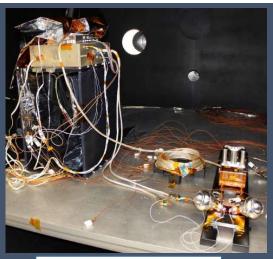

	Level 1	Level 2	Level 3	Level 4A	Level 4B
LuSEE: FGM,SCM	B(t)	LMS: σ _a (f)	σ(z)	T _{MT} (z m)	T(z) m(z)
LTC: E-Probes	E(t)				
LISTER	T(t, z<3m)		q	T _{HF} (z m)	


• Determine heat flow by measuring temperatures and thermal conductivity at depths up to 3 m.

Actual Deployment Distance ~20 m

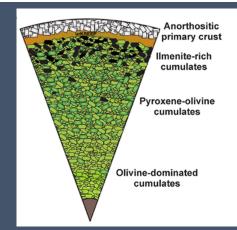
- Determine electrical conductivity of the interior using the magnetotelluric (MT) method.
- Joint measurement of heat flow and electrical conductivity separates the temperature and compositional dependence of each.
- Single-station experiments can be completed in days.


The Magnetotelluric Method (MT)


- Measure natural low-frequency electric and magnetic fields.
- Determine resistance from a version of Ohm's Law
 R = V / I = Electric Field / Magnetic Field
- Solve for the distribution of resistivity with depth, knowing that the skin-depth effect allows lower frequencies to penetrate deeper.
- MT is superior to magnetic-transfer function (Apollo 12-Explorer 35) because it
 - does not require a distant, reference observation.
 - is largely insensitive to plasma distortions, allowing measurement at higher frequencies and hence imaging at shallower depths << 500 km.

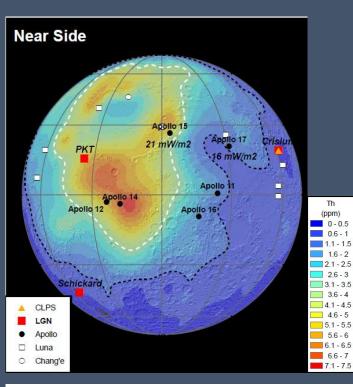
LISTER & LMS Development

- Development on both instruments began with IRADs in 2008-9.
- LISTER continued under PIDDP, SBIR.
- LMS continued under COLDTech, ICEE-2.
- Separately selected for flight under LSITP.
 - LMS KDP 2/21.
 - LISTER KDP 10/21.

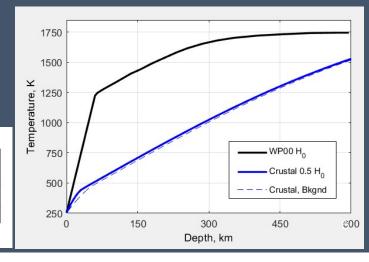


(1) Vertical Differentiation

- Primary differentiation into crust, mantle, & core following magma ocean.
- Fractional crystallization in mantle led to stratification.
- Gravitational instability caused overturn.
 - <u>But</u> surface composition of SPA suggests uppermost mantle was stratified ferroan cumulates & KREEP-rich (*Moriarty et al.,* 2020).
 - Suggests overturn was incomplete and KREEP was globally distributed.
- Electrical conductivity controlled by Fe content: very different profiles for end-members.
 - Heat flow constrains temperature profile.



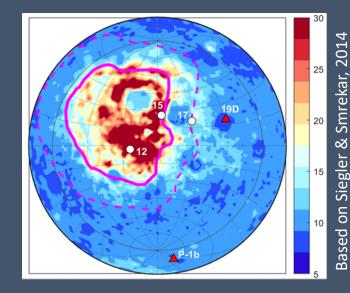
fractional

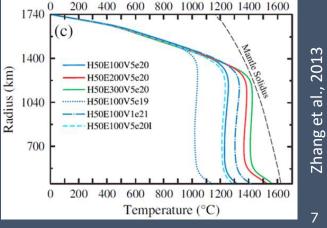

McCubbin et al., 2015

(2) Lateral Asymmetry (Procellarum KREEP Terrane)

– Maria concentrated in western near side (Man in the Moon).

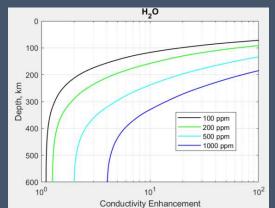
- Revealed by Lunar Prospector 1998 to be rich in incompatible elements "KREEP" – Procellarum KREEP Terrane (PKT).
- Dregs of magma ocean were concentrated in one part of the Moon, forming distinct crust and perhaps causing long-lived volcanism. Theories conflict about the distribution of heating and its effect on the surface.
- Measure heat flow and electrical conductivity **<u>far</u>** from PKT.
 - Calibrate prior Apollo measurements to new background.

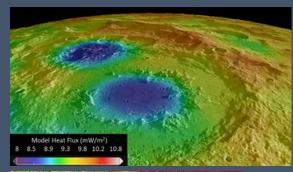


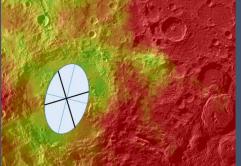

Table 1. Alternative Models for PKT Interior

Interior Model	Apollo 15 & 17	Gravity & Topography	Apollo 12 Electrical	Long-Lived			
	Heat Flow		Conductivity	Volcanism			
Hot Mantle ¹	Yes	Maybe	No	Yes			
Cold Mantle ²	Yes	Yes	Yes	Maybe			
¹ Wieczorek and Phillips, 2000. ² Grimm, 2013.							

(3) Thermal Structure and Evolution

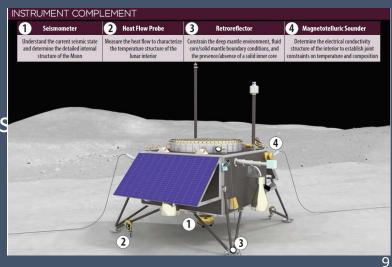

- Surface heat flow is sum of contributions from mantle, crust, and KREEP.
 - Unique separation A15, A17, Schrodinger for "cold" PKT.
 - Deconvolve incorporating electrical conductivity for "hot" PKT.
- Lunar temperature profile
 - Lunar thermal evolution models make specific predictions for temperature profile determined by heat budget and factors controlling mantle viscosity.
 - Slope of stagnant lid in mantle determined by heat flow.
 - Temperature of convecting interior (& viscosity) determined from electrical conductivity.





Schrödinger

- Selected by NASA, but useful for study of global differentiation and thermal evolution.
 - Far from PKT, needed to establish background properties of mantle.
 - Peak-ring structure presents choice of two different crustal thicknesses, both distinct from prior landing sites.
 - Rim of SPA, which itself is a large-scale geological probe of the non-PKT Moon.
 - Anisotropy of electrical conductivity may point toward different SPA structure, if present.
 - Local pyroclastic volcanism may have distinct, preserved source zone.
 - Electrical-conductivity activation energy for (residual) water is different than iron.
 - Unlike Reiner Gamma, no strong static magnetic fields that may disturb EM sounding.



Outlook

- LISTER & LMS previously, independently selected for CLPS 19D mission!
 - Launch August 2023; landing in Mare Crisium.
 - Mission also has laser retroreflector (D. Currie, UMD).
- PRISM launch likely early 2025.
 - LuSEE requires Jupiter, Saturn below horizon.
 - Mission also includes seismic suite (M. Panning, JPL).
- Prototypes of principal payload suite of a New Frontiers Lunar Geophysical Network (Cohen et al., 2009; Shearer & Tahu, 2013; Neal et al., 2020) or Artemis geophysics (Weber et al., 2020) will have flown.
 - LGN optimizes geographic diversity & long-term monitoring.

