

## Infectious Associated Chronic Illnesses Translation from the Laboratory to the Clinic

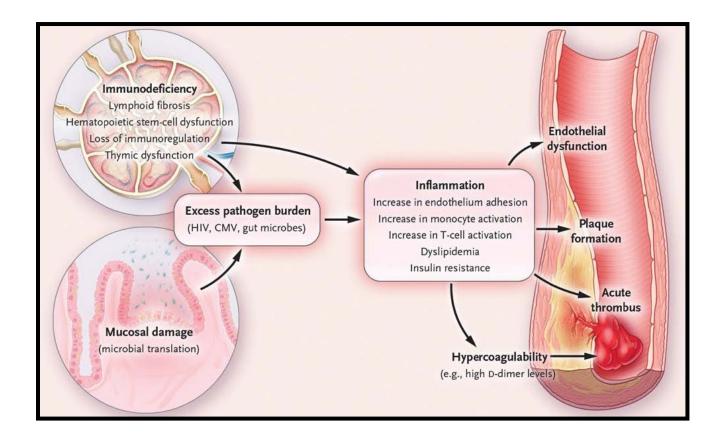
#### Steven G. Deeks, MD

Professor of Medicine Division of HIV, Infectious Diseases, and Global Medicine University of California, San Francisco



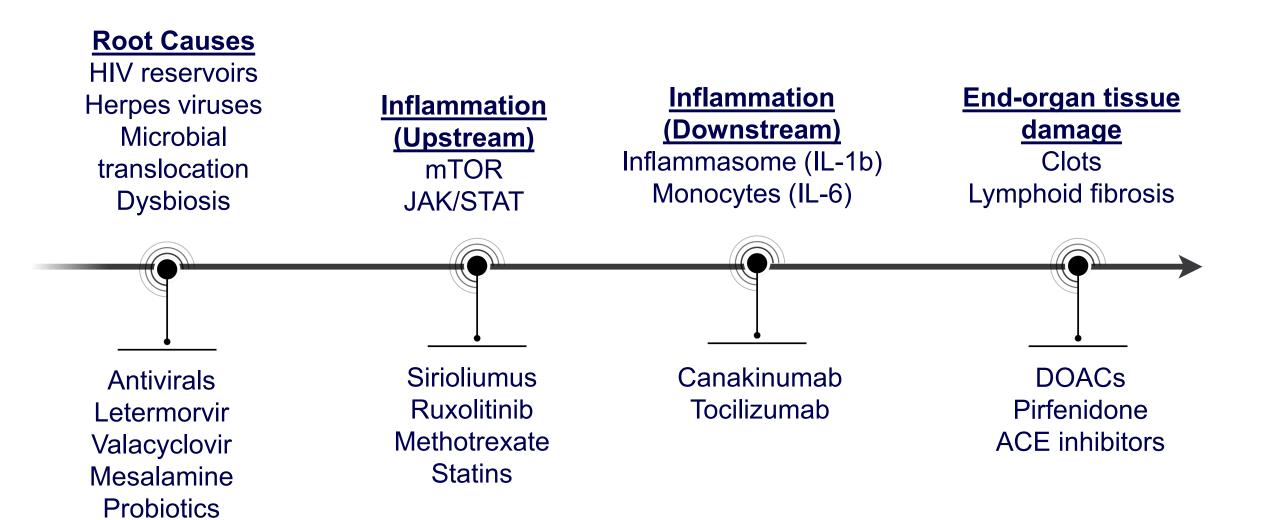
steven.deeks@ucsf.edu





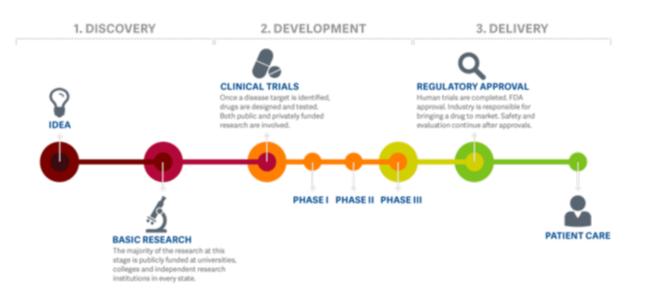



#### Treated HIV is associated with excess risk of multiple morbidities, many also common after acute COVID, but "Long HIV" is not a thing

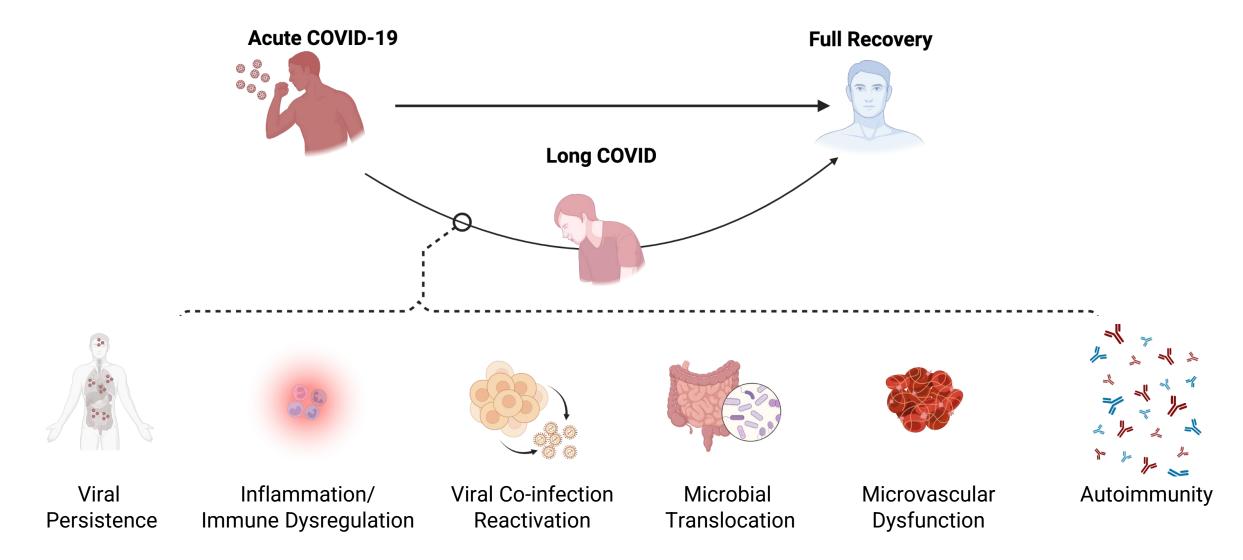

- Mortality (Kuller, PLoS Med, '08; Tien, JAIDS, '10; Tenorio, JID '14; Hunt, JID '14)
- Cardiovascular Disease (Duprez, Atherosclerosis, 2009)
- **Cancer** (Breen, Cancer Epi Bio Prev, 2010; Borges, AIDS, 2013)
- Venous Thromboembolism (Musselwhite, AIDS, 2011)
- COPD (Attia, Chest, 2014; Kirkegaard-Klitbo, AIDS, 2017)
- Renal Disease (Gupta, HIV Med, 2015; Kirkegaard-Klitbo, AIDS, 2017)
- Bacterial Pneumonia (Bjerk, PLoS One, 2014)
- Cognitive Dysfunction (Burdo, AIDS, 2013; Sattler, JAIDS 2015)
- **Depression** (Martinez, JAIDS, 2014)
- Frailty (Erlandson, JID, 2013; Piggott, CROI 2017, #133)
- Type 2 DM (Brown, Diabetes Care, 2010; Reid, AIDS, 2017)

## **HIV-associated chronic illness: Mechanisms**




- Acute and persistent HIV results in irreversible <u>tissue</u> <u>damage</u>, leading to chronic <u>inflammation</u> and <u>hypercoagulability</u>, which in turn causes vascular disease
- Inflammation enhanced by autoreactivity, microbial translocation (gut) and viral reactivation (EBV, CMV)

Experimental medicine using <u>available repurposed drugs</u> resulted in characterization of how HIV causes chronic disease, which resulted in recent phase III studies of statins (REPRIEVE)




#### **Experimental medicine**

- Defining mechanisms of disease in people is difficult
  - Most studies are descriptive/observational
- Experimental medicine: Interrupt a pathway of interest in a controlled manner ("probe studies")
  - Often done by repurposing existing drugs
- When done correctly, these studies can provide proof-of-concept to encourage massive investment in developing new therapies



#### What causes infection-associated chronic illnesses? Mechanistic pathways same as in treated HIV



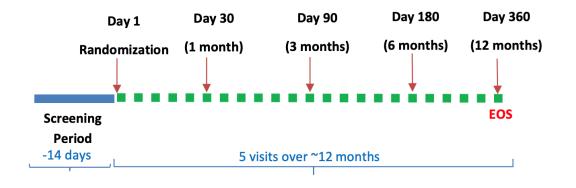
Peluso & Deeks Trends in Immunology 2022

| Mechanism | Treatment                                                          |
|-----------|--------------------------------------------------------------------|
|           | Antiviral drugs, therapeutic vaccines, anti-<br>inflammatory drugs |

| Mechanism                                             | Treatment                                                                 |
|-------------------------------------------------------|---------------------------------------------------------------------------|
| Acute viral infection with irreversible tissue damage | Antiviral strategies                                                      |
| Persistent viral infection and ongoing tissue harm    | Antiviral drugs, monoclonal antibodies, therapeutic vaccines, CAR-T cells |

| Mechanism                                                                                                                                                                  | Treatment                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acute viral infection with irreversible tissue damage                                                                                                                      | Antiviral strategies                                                                                                                                                                                               |
| Persistent viral infection and ongoing tissue harm                                                                                                                         | Antiviral strategies                                                                                                                                                                                               |
| <ul> <li>Inflammation</li> <li>SARS-CoV-2 persistence</li> <li>EBV reactivation</li> <li>Mucosal breakdown</li> <li>Dysbiosis</li> <li>Loss of immunoregulation</li> </ul> | <ul> <li>Anti-inflammatory drugs: Steroids,<br/>JAK/STAT inhibitors, mAbs (anti-INF,<br/>anti-IL-6, anti-IL1β, anti-TNFα), IVIG</li> <li>EBV-directed therapies</li> <li>Probiotics</li> <li>Larazatide</li> </ul> |

| Mechanism                                             | Treatment                       |
|-------------------------------------------------------|---------------------------------|
| Acute viral infection with irreversible tissue damage | Antiviral strategies            |
| Persistent viral infection and ongoing tissue harm    | Antiviral strategies            |
| Inflammation                                          | Anti-inflammatory drugs         |
| Auto-antibodies                                       | IVIG, B cell-directed therapies |


| Mechanism                                             | Treatment                                                                            |
|-------------------------------------------------------|--------------------------------------------------------------------------------------|
| Acute viral infection with irreversible tissue damage | Antiviral strategies                                                                 |
| Persistent viral infection and ongoing tissue harm    | Antiviral strategies                                                                 |
| Inflammation                                          | Anti-inflammatory drugs                                                              |
| Auto-antibodies                                       | IVIG, B cell-directed therapies                                                      |
| Microvascular disease (clotting, enthotheliitis)      | Anti-platelet drugs (aspirin, clopidogrel),<br>anticoagulants (DOACs), fibrinolytics |

#### Immunotherapy for Neurological Post-Acute Sequelae of SARS-CoV-2 (IN-PASC) (NCT05350774)

- Background: IVIG has established efficacy in autoimmune syndromes (Guillain–Barré Syndrome)
  - Block Fc engagement on macrophages, reducing inflammation
- Study design: Randomized, placebo-controlled study of IVIG versus normal saline
  - IVIG: 0.4 grams/kg/day for five days
- Population: Neuro-Long COVID
- Endpoints: Multiple PROs, autonomic testing



# Safety of an anti-SARS-CoV-2 safety of an anti-SARS-CoV-2 monoclonal antibody and response to treatment in individuals with Long COVID (OUTSMART-LC) (NCT05877508)



- Hypothesis: Viral particles persist in tissue/cellular reservoirs (replicating or not)
- AER002: RBD-specific monoclonal antibody with activity against all variants circulating through late 2022
- Design: 30 participants with LC dating back 2020-2022 randomized 2:1 to receive AER002 1200 mg or placebo (therapeutic levels > 6 months)
- Outcomes : PROMIS 29, COMPASS 31, Neurocognitive tests, 6 MWT, DSQ-PEM, inflammatory/coagulation markers, spike protein`



Evaluation of the Safety and Efficacy of Orally Administered NLRP3 Inhibitor, Dapansutrile on Individuals with Post-Acute Sequelae of COVID-19 (END-PASC)

- Background: Dapansutrile prevents NLRP3 inflammasome formation, in turn inhibiting IL-1β & IL-18
- Design: Randomized, placebo-controlled, 6 weeks followed by 6 weeks open label;
- Target Enrollment: 30 participants (2:1 randomization)
- Endpoints: Same as the AER002 study



# Randomized trial EValuating baricitinib on pERSistent nEurologic and cardiopulmonary symptoms of Long COVID (REVERSE-LC, NCT05858515)

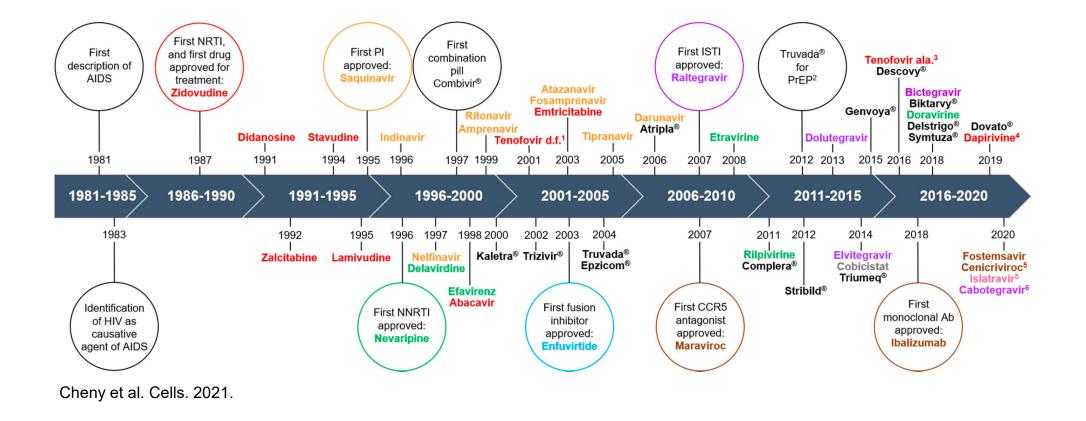
- Background: Inflammation predicts neuro-LC
  - Elevated cytokines (IL-6, IL-1b, TNFa) suggest microglial activation
  - JAK inhibitors disrupt these pathways and have proven efficacy/safety in acute COVID
- Design: Baricitinib versus placebo for 12 weeks in adults with neurocognitive impairment due to LC
- Outcomes: Neurocognitive function, CPET, PEM, QOL, cytokines, spike protein



#### **RECOVER: Emerging clinical trials agenda**

- RECOVER-VITAL: A Platform Protocol for Evaluation of Interventions for Viral Persistence, Viral Reactivation, and Immune Dysregulation in Post-Acute Sequelae of SARS-CoV-2 Infection (NCT05595369)
  - Paxlovid versus placebo
  - Paxlovid is also being studied at Stanford (NCT05576662) and Yale (NCT05668091)
- RECOVER-NEURO: A Platform Protocol for Evaluation of Interventions for Cognitive Dysfunction in Post-Acute Sequelae of SARS-CoV-2 Infection (PASC)
  - Multiple interventions

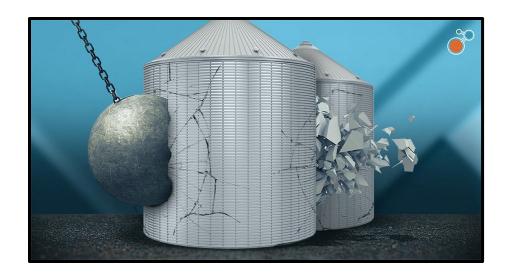



#### **Popular treatments in the community** *Social media, popular press, early POC studies*

- Viral persistence: Therapeutic vaccines, antivirals (Paxlovid, mAbs)
- Endotheliitis (immune complexes): IVIG, steroids
- Dysautonomia: Pyridostigmine, vagus nerve stimulation, stellate ganglion block, IVIG, Enhanced External Counter Pulsation (EECP)
- Mast cell activation syndrome (MACS): Antihistamines
- Microvascular clots: Dialysis/apheresis (filtering), anticoagulation, fibrinolytics
- EBV reactivation: Valganciclovir, experimental antiviral therapies
- Leaky gut: Probiotics
- Neurocognitive symptoms: Naltrexone, HBOT
- Inflammation: Colchicine, IVIG, statins, steroids, monoclonal antibodies
- Autoantibodies: BC 007 (DNA aptermer; G-protein-coupled receptors)
- Mitochondria dysfunction: AXA1125, oxaloacetate
- Miscellaneous: Fasting



#### Validation of plasma HIV RNA was transformative


If pathogen persistence is the root cause, then this should happen for IACIs



With a easily measured surrogate marker available, dozens of companies immediately entered the field, leading to > 25 drugs and rapid transformation of the disease

# Multiple infections results in a chronic illness that is remarkably consistent, suggesting there must be a <u>universal mechanism</u>

- SARS (2003)
- EBV
- Zika
- Chikungunya
- Ebola/Marburg
- Enterovirus
- Borrelia burgdorferi (Lyme)
- Infection-associated ME and dysautonomia



### Infection-associated chronic illnesses

- Stigma is disabling and needs to be addressed
- Mechanism: Multiple factors and pathways involved, suggesting need for combination approaches
  - Massive biorepository from 2020 exists and might provide most direct way to test mechanistic hypotheses
- Lack of clarity on mechanisms and endpoints are a major barrier for industry engagement
- Post-pandemic barriers: Limited interactions, we do not know each other (our strengths and weakness, our resources) and often do redundant work

| KEYSTONE SYMPOSIA                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                        |
| on Molecular and Cellular Biology                                                                                      |
| Long COVID and Post Acute Sequalae of SARS CoV 2 (PASC): Pathogenesis and Treatment                                    |
| (F1)                                                                                                                   |
|                                                                                                                        |
| August 27-30, 2023 • Eldorado Hotel & Spa • Santa Fe, NM, USA                                                          |
| Scientific Organizers: Michael J. Holtzman, Steven G. Deeks, Resia Pretorius and Catherine A. Blish                    |
| Supported by the Directors' Fund                                                                                       |
| Scholarship Deadline: May 24, 2023 / Abstract Deadline: May 24, 2023 / Discounted Registration Deadline: June 27, 2023 |