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The goal is not to make the data unbiased 
or ML/AI model fair but to

make the overall system and outcomes fair

AI/ML 
Model Actions Outcomes
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Current 
(Human) 
Decisions

Actions Outcomes

Does the new system need to be perfect or can it be better than the status quo and 
still worth implementing?

Compared to what?
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• Where does bias come from?
• How do we determine what type of bias(es) to care about?
• How can we detect the bias(es)?
• How can we reduce the bias(es)?

We need to understand and discuss…
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World Data AI Pipeline Actions Disparity in 
Outcomes

There are (unfortunately) many sources of bias

Choice of Data
Sample Bias
Measurement Bias
Label Bias

...it’s not (just) the data
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Even within the AI Pipeline, bias can be introduced in every step

Get Data Link Data Process Data Explore Data

Formulate 
Model

Build and 
Select 'Good' 

Models

Evaluate 
Selected 
Models

Deploy, 
Monitor and 

Update
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World Data AI Pipeline Actions Disparity in 
Outcomes

There are (unfortunately) many sources of bias

Choice of Data
Sample Bias
Measurement Bias
Label Bias

...it’s not (just) the data
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Define
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fairness or 
equity 
goals)

Measure
and 

Detect 
(bias)

Understand 
(root causes 

of bias)

Improve
(fairness of 
AI systems)

Mitigate
(the impact 

through 
adjusting 

interventions)

Monitor & 
Evaluate

How do we make the overall system and outcomes fair ?
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• Where does bias come from?
• How do we determine what type of bias to care about?
• How can we detect it?
• How can we reduce it?
• Wrap-up and Practical Tips

We need to understand and discuss…
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• Based on who is selected for an intervention
– Only/disproportionately selecting people from a certain background/age/race/gender/…

• Based on the types of mistakes in the selection/allocation
– Selecting people who are not at risk
– Missing people who are at risk

Types of Biases
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• Do we allocate equal resources to every group?
• Do we allocate resources proportional to need? 
• Do we make sure we don’t miss people with of 

a certain group disproportionately?
• Do we make sure we don’t have 

disproportionate false positives from a particular 
group?

• ...

Many Bias Measures: How do we select what we design for?

• Statistical/Demographic Parity
• Impact Parity
• False Discovery Rate Parity
• False Omission Rate Parity
• False Positive Rate Parity
• False Negative Rate Parity
• ...
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Fairness Tree
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Zoomed in Version
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• Where does bias come from?
• How do we determine what type of bias to care about?
• How can we detect it?
• How can we reduce it?
• Wrap-up and Practical Tips

We need to understand and discuss…
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What is needed

Tools

Case Studies

Regulations

Review Boards

Aequitas
Open Source Bias & Fairness Audit Tool

http://www.datasciencepublicpolicy.org/aequitas/

http://www.datasciencepublicpolicy.org/aequitas/
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Aequitas: Bias Audit Tool
http://datasciencepublicpolicy.org/aequitas

http://datasciencepublicpolicy.org/aequitas
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Gather Data
Identify 

Protected 
Groups 

Select Fairness 
Metric(s)

Generate 
Audit Report

Bias Audit Flow

What data do we need to audit the predictions of an AI model?

1. Predictions (or classifications)
2. Attributes that define protected groups  (e.g. race, sex, age)
3. (True) Labels/Outcomes (if interested in disparate errors)



Rayid Ghani  |  @rayidghani

• Where does bias come from?
• How do we determine what type of bias to care about?
• How can we detect it?
• How can we reduce it?
• Wrap-up and Practical Tips

Outline for this module
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Embedding Fairness in the Entire Process
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● Fix the world
● Fix the input data
● Fix the AI Pipeline
● (Post-hoc) Fix model predictions

World Data AI Pipeline Actions Disparity in 
Outcomes

How can we reduce bias in ML models?
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Some common practitioner perceptions

• Not using race in my models makes by models not racist

• Using race in my models makes my models racist

• Bias comes from and can be fixed by “fixing” the data

• There is always a tradeoff between fairness and accuracy

• I have to satisfy all measures of bias in order to be fair

• I have to eliminate all bias in order to use/deploy an ML system

• A fair ML model = Fair and equitable outcomes
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• Machine Learning and AI are giving us ways to design more “personalized” risk 
assessment systems that are more effective and more efficient, and have the potential to 
be more equitable

• Fairness and Equity need to be treated as primary goals/metrics in ML systems and treated 
as an integral part of every project: Scoping, community and stakeholder engagement, 
metrics, validation, monitoring outcomes

• Our focus should not just be on making the data unbiased and the ML model fair but rather 
on making the overall system and outcomes fair

• Dealing with fairness in data science systems is a new and rapidly changing area and 
practitioners need to be careful about methods and tools that may not have been fully 
validated

Summary
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• Data Science Project Scoping Guide

• Open Source Data Science Tools
– Triage: ML Toolkit
– Aequitas: Bias Audit Tool 
– Code for all projects: www.github.com/dssg

• Hands-on Fairness and Bias Tutorial with interactive Jupyter Notebooks

• Data Science for Social Good Fellowship

Useful Resources

http://dsapp.uchicago.edu/resources/data-science-project-scoping-guide/
https://github.com/dssg/triage
https://github.com/dssg/aequitas
http://www.github.com/dssg
https://dssg.github.io/fairness_tutorial/
http://www.dssgfellowship.org/
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rayid@cmu.edu
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