Magnetic Nanoparticles & MR: From Imaging to Assays to Sensors

Lee Josephson

Massachusetts General Hospital Center for Translational Nuclear Medicine a division of Nuclear Medicine & Molecular Imaging

Harvard Medical School **Disclosure for Lee Josephson**

Consultant & Cofounder T2 Biosystems, Inc. (NMR Assays & Sensor) Magnetic Nanoparticles & MR: An introduction

Nanoparticles As MR Contrast Agents

Nanoparticles for MR Based Assays

Nanoparticles & MR Based Implantable Biosensors

Polymer Coated Iron Oxides As Drugs

Drug	Туре	Indication	Status	
InFeD	Paramagnetic iron oxide/dextran	Fe anemia	Approved US	
Dexferrum	Paramagnetic iron oxide/dextran	Fe Anemia	Approved US	
Feridex IV	Superparamagnetic iron oxide/dextran	Short Circ/ Liver MRI	Approved US, Europe & Japan	
Resovist	Superparamagnetic iron oxide/carboxy- dextran	Short Circ/ Liver MRI	Approved Europe & Japan	
Combidex	Superparamagnetic iron oxide/dextran	Long Circ/ Lymph Node	Post phase III	
Ferumoxytol	Superparamagnetic iron oxide/CM- dextran	Long Circ/ Fe anemia	Approved Us	
Supravist	Superparamagnetic iron oxide/	Long Circ/ MR	?	
	Carboxydextran	Angiograph.		

Polymer Coated Iron Oxides: Crystal Based Superparamagnetism

Superparamagnetic Magnetite, Fe₃O₄ 9000 Fe/crystal, 6000 Fe³⁺(Ferric), 3000 Fe²⁺ (Ferrous)

- Fe³⁺ unpaired electron spins in two types of sites oppose each other
- $3000 \text{ Fe}^{3+} \quad 3000 \text{ Fe}^{3+}$ $6000 \text{ Fe}^{2+} \text{ spins are coupled}$ $3000 \text{ X 2 spins/Fe}^{2+}$

Unit cell of magnetite

Conversion of Superparamagnetic Iron Oxide Paramagnetic Ionic Iron

Crystalline Superparamagnetic Iron

Dissolution pH 4 Citric Acid

Ionic Iron

Fe²⁺-Citrate Fe³⁺⁻ Citrate

Unpaired ferrous electrons respond to a magnetic field in unison (coupled)

High Magnetism at 37 °C

More unpaired electrons but uncoupled

Low Magnetism at 37 °C V. High magnetism @ -77 °K

Combidex/MION & Ferumoxytol Nanoparticles: Prolonged Vascular Phase, LN Uptake

Gadolinium Chelates: Normal Renal Function

Gadolinium Chelates: Poor Renal Function

Long Circulating Magnetic Nanoparticles For Lymph Node Imaging

detection of clinically occult lymph-node metastases in prostate cancer"

Combidex/MION Darkens Normal Lymph Nodes: T2 Weighted MRI

Magnetic NP's Can Be Targeted To Tumor or Normal Tissue

Selective Normal Tissue T2 Shortening/Darkening

Selective Tumor T2 Shortening Darkening

Magnetic NP's Can Be Targeted To Tumor Or Normal Tissue

Selective Normal Tissue T2 Shortening/Darkening

Pre-injection Contrast

Post Injection Contrast

Magnetic Iron Oxide NP's Be Targeted To Tumor Or Normal Tissue

Selective Normal Tissue T2 Shortening/Darkening

Selective Tumor T2 Shortening/Darkening

Pre-injection contrast

Post Injection Contrast

MR Tumor Contrast Strategies With Magnetic Nanoparticles

Strategy	Molecular Target	Cellular Target	Contrast Strategy
Tumor Targeting	$a_V \beta_3$ integrin	Tumor Cell (BT-20)	Decr <i>Tumor</i> T2
Normal Tissue Targeting	Gastrin Releasing Peptide Receptor (GRP Receptor)	Normal Acinar cell of pancreas	Decrease <i>Normal</i> Pancreatic T2

*BN= bombesin-like peptide binds GRP Receptor

Molecular Targeting vs. Tissue Macrophage Activity with Targeted NP's: scrambled peptide control NP

Target	Targeted NP	Control NP
Integrin BT-20 tumor	RGD-CLIO <mark>(Cy5.5)</mark>	DRG-CLIO(Cy3.5)
GRP Receptor Norm. Panc.	BN-CLIO(Cy5.5)	scrBN-CLIO(Cy5.5)

Imaging Tumor Integrin With RGD-CLIO(Cy5.5)

Targeting the BT20 tumor: Co-injection Dual Fluorochrome Specificity Protocol

Montet (2006) Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 49, 6087. Montet, (2006) Nanoparticle imaging of integrins on tumor cells. Neoplasia 8, 214.

MR Tumor Contrast Strategies With Magnetic Nanoparticles

Strategy	Molecular	Cellular	Contrast
	Target	Target	Strategy
Tumor Targeting	$a_{V}\beta_{3}$ integrin	Tumor Cell	Decr <i>Tumor</i> T2
Normal	Gastrin Releasing	Normal	Decrease
Tissue	Peptide Receptor	Acinar cell of	<i>Normal</i>
Targeting	(GRP Receptor)	pancreas	Pancreatic T2

*BN= bombesin-like peptide binds GRP Receptor

Human Tissue Microarray: BN Peptide Binds GRP Receptor on Normal Pancreas (not tumor)

Montet, (2006) Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 17, 905.

Imaging Pancreatic Tumor With BN-CLIO(Cy5.5): GRP Receptor on Normal Acinar Cells

Pre-contrast

Post-contrast

Post Contrast

Why Magneto/fluorescent Nanoparticles (MFNP's) For Tumor Margin Delineation?

- Enhance Tumor/Normal Contrast In Two Modalities With The Same Nanoparticle
 - MRI: pre-operative
 - Fluorescence: intra-operative
- MFNP's Are Internalized by Cells & Feature Slowly Metabolized

Classes Of Margin Delineating Agents

Gd Chelates & Fluorescent Dyes

MW < 0.8kDa

Rapid wash in, wash out where BBB is disrupted. Magneto/fluorescent Nanoparticle

MW ~ 1000 kDa

Internalization and slow metabolism by cells (if BBB is disrupted)

Blood half-life: 20 min (human)

Contrast Half-life: Variable: 10 -200 min Blood half-life: 24 hr

Contrast half-life: 3-4 d

Visualization of brain tumor with magneto/fluorescent nanoparticle

Fluorescence reflectance image @ ~ 26 h Post Inj. "Intra-operative"

Pre-operative MR, Intra-operative Fluorescence Imaging

T2w & MFNP "CLIO(Cy5.5)"

While Light

GFP Cy5.5

Nude Mouse

Rat

Fluorescence Reflectance Image

T1w & Gd

Objective Measurement Of Nanoparticle Fluorescence To Determine Tumor Margin

GFP Fluorescence

Trehin, (2006) Fluorescent nanoparticle uptake for brain tumor visualization. *Neoplasia 8*, 302.

Magnetic Nanoparticles As MR Contrast Agents

Established safety and metabolism

Enable two targeting and tumor contrast enhancing strategies

Magnetofluorescent NP's can be pre-operative MR and intraoperative fluorescent imaging agents Magnetic Nanoparticles & MR: An introduction

Nanoparticles As MR Contrast Agents

Nanoparticles for MR Based Assays

Nanoparticles & MR Based Implantable Biosensors

MR Proton Relaxometry: Pulse & Listen

Pulse

- Sample in homogeneous magnetic field
- Radiofrequency pulse excites protons (*H*₂O) to higher energy levels and synchronizes them
 Listen
- Emitted radiofrequency signal from protons

Larmour relationship: frequency of absorbed radiation proportional to magnetic field: e.g. Bo= 0.47 Tesla, 20 MHz

MR Relaxometry: Radiofrequency Interrogation of Water Protons

Magnetic Particles Enhance (speed up) Proton Relaxation

Mechanisms Of Proton Relaxation

- T1 or spin-lattice relaxation: energy transfer from an excited proton to other materials
- T2 or spin-spin relaxation: spin dephasing due to magnetic field inhomogeneity

T1 Spin Lattice Relaxation

Water in a homogeneous magnetic field, Induced Bo Is Constant In Sample

T1: Water diffuses & makes contact with a magnetic surface

T1: Water diffuses & makes contact with a magnetic surface

T1: Water diffuses & makes contact with magnetic surface

T2 Spin-spin Relaxation

T2 Spin-spin Relaxation: A magnetic particle creates regions of local magnetic field inhomogeneity

T2 Spin-spin Relaxation: Water diffuses through volumes where magnetic field is not Bo

T2 Spin-spin Relaxation: Water diffuses through volumes where magnetic field is not Bo

T2 Spin-spin Relaxation: Water diffuses through volumes where magnetic field is not Bo

MRI: T2 From Different Points In Matrix

Sagital T2w Image, Lumbar Spin Single slice, 2D image

Magnetic Relaxation Switch (MRSw's) Assays

 At a given concentration of magnetic particles, T2 depends on the "microdistribution" of magnetic field inhomogeneities, the
"uneveness" of magnetic moments

• T2 depends on whether particles are aggregated or dispersed.

Magnetic Nanoparticles As Magnetic Relaxation Switches (MRSw's)

MRSw Assay Of Target Oligonucleotide: Indifference To Light

Perez, (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20, 816.

MRSw Assays Measure Diverse Analytes (MGH Group Assays Only)

Target/Analyte	Reference
DNA, proteins	(2002) Nature Biotech 20:816
DNA Methylases	(2002) JACS 124:2856
Proteases	(2003) Angew Chem. 42:1375
Viruses	(2003) JACS 125:10192
Polymerases	(2004) Cancer Res. 64:639
Glucose, Folate	(2006) Small 2:1144
Bacteria, cells	(2007) Bioconj Chem.18:2028
Anti viral antibody	(2008) Angw Chem 47:4119
Bacteria, cells	(2008) Nat. Med. 14:869.

MRSw Assay For Telomerase Activity

Grimm, (2004) Novel nanosensors for rapid analysis of telomerase activity. *Cancer Res 64*, 639.

Magnetic Nanoparticles & Proton Relaxation

Spin-lattice, T1 relaxation: Water contacts surface of NP's and looses energy to its surroundings

Spin-spin, T2 relaxation: Water diffuses through the magnetic field of the NP, and those spins are knocked out of phase with spins that have never "experienced" the magnetic field

Multi-pulse Sequence MRSw Interrogation

Taktak (2007) Multiparameter magnetic relaxation switch assays. Anal Chem 79, 8863.

Miniaturized, Multiwell Relaxometer, 8 wells, 10 uL/well

Lee (2008) Nat Med "Chip NMR biosensor for detection and molecular analysis of cells"

Magnetic Nanoparticles As MRSw Assays

Homogeneous mix & read but Indifferent to light

Targets: viruses, cells, proteins, nucleic acids, etc.

High sensitivity: microspheres & magnetic field

assisted chemical reactions

Multipulse sequence interrogation permits corrections

for unknown reagent (NP) concentration

Miniaturized relaxometer designs

Magnetic Nanoparticles & MR: An introduction

Nanoparticles As MR Contrast Agents

Nanoparticles for MR Based Assays

Nanoparticles & MR Based Implantable Biosensors

Competitive, *Reversible* MRSw Assay For Glucose

High Glucose High T2 Low Glucose Low T2

MRSw Glucose Sensor Format: Glucose Enters & Leaves While Reagents Are Confined

Sun. (2006) Continuous analyte sensing with magnetic nanoswitches.

Small 2, 1144. "

Glucose Sensor: Glucose Enters & Leaves While Reagents Are Confined

MRSw Sensor: Nanoparticle Sensor Responds to External Glucose With T2 Change (MRI)

0 mg/mL Glucose NP Clustered Low T2 Dark Sensor

2 mg/mL Glu NP Dispersed Hi T2 Bright Sensor

Irreversible MRSw Assay For hCG betaHCG Ab-NP's High T2 Low T2

Kim (2007) Magnetic relaxation switch detection of human chorionic gonadotrophin. *Bioconjug Chem 18*, 2024.

MRSw Sensor Chemistry For hCG

Implantable MRSw Sensor For Tumor Excreted hCG

Implantable MRSw Sensor for Tumor Excreted hCG, MRI @ 4.7T

Daniel (2009) "Implantable diagnostic for cancer monitoring..." Biosens. Bioelect.

Summary MRSw Sensors

- Indifferent to light
- Emit Rf radiation but no power supply
- Simple MR Instrumentation: Discriminate Sensor T2 From Bulk T2, No MR image Needed
- Multianalyte MRSw Sensor Capability Based on MRSw Multianalyte assays
- Use Multiparameter Sample Interrogation

Future Magnetic NP / MR Technology

- Magnetofluoroescent NP's for Precontrast MR and Intraoperative Fluorescent Images
- MRSw Assays
 - Intraoperative measurement of biomarkers (cells or proteins), e.g. tissue aspirates
 - Biomarkers in stool homogenates
- Implantable MRSw Sensors
 - Irreversible NP aggregation: Cumulative biomarker measurement over time...
 - In situ measurements of intratumoral drug, pH, biomarker measurements (clinical research)

Acknowledgements

- Manny Perez: MRSw assays
- Xavier Montet: Targeted NP's as MR Contrast Agents
- Eric Sun: Continuous Glucose Sensor
- Jan Grimm: MRSw Telomerase Activity
- Sonia Taktak: Multiparameter MRSw's
- Grace Kim, Karen Daniels, Michael Cima: hCG Sensor
- Hakko Lee: Miniature Relaxometer
- Dr. Ralph Weissleder (CMIR Director)

Lewis Hine (1931) Construction of the Empire State Building, Manhattan, NYC