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The Age of Big Data
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How do you give a prognosis?

* ook at a randomized trial
* ook at population-level data
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Our Experience: Serious lliness Conversations at Penn

+ Early conversations &
care, decrease unwa

Serious lliness Conversation Guide

CLINICIAN STEPS CONVERSATION GUIDE

O Set up Understanding
* Thinking in advance

= |s this okay?

What is your understanding now of where you
are with your illness?

= Combined approach

How much information about what is likely to be
ahead with your illness would you like from me?
FOR EXAMPLE:

Some patients like to know about time, others like to know
what to expect, others like to know both.

Share pr i ilored to infor ion preferences

If your health situation worsens, what are your
most important goals?

What are your higgest fears and worries about
the future with your health?

What abilities are so critical to your life that
you can’t imagine living without them?

If you become sicker, how much are you
willing to go through for the possibility of
gaining more time?

= Benefit for patient/family Information
preferences
= No decisions today
O Guide (right column)
O Summarize and confirm
O Act Prognosis
= Affirm commitment
* Make recommendations
to patient Goals
* Document conversation
* Provide patient with
Family Communication
Guide Fears /
Worries
Function
Trade-offs
Family

Draft R4.2 12/10/13

© 2012 Ariadne Labs: A Joint Center
for Health Systems Innovation and
Dana-Farber Cancer Insfitute

How much does your family know about your
priorities and wishes?

(Suggest bringing family and/or health care agent to next visit
to discuss together)

prove goal-concordant

& Penn Medicine
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Our Experience: Serious lliness Conversations at Penn

¢ Early conversations about goals and preferences improve goal-concordant
care, decrease unwarranted end-of-life utilization

+ Despite training, SIC documentation had been decreasing at Penn

+ \We developed a ML algorithm to predict palliative care need using
structured EHR data

Demographics Age, Gender
Comorbidities 33 Elixhauser - Total count
comorbidities * Recent®
EKG values* QRS duration, BPM « Total count
: » First/last value
Laboratories* CMP, CBC,LDH, . Min/Max
Tumor markers, etc. « Proportion ordered STAT
» Missing observations imputed using mean or median imputation } ]
 Feature selection: Drop highly correlated and zero variance variables 559 variables

@ Penn Medicine Parikh et al, JAMA Network Open, 2019



Our approach

. Qualitative interviews to assess problem
. Algorithm development and validation

. Clinician surveys

Prospective validation

~easibility pilot

Pragmatic randomized trial
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Moving from Retrospective to Prospective Validation

Chester County Hospital

Pennsylvania Hospital

Breast
Gl

« Thoracic

Lymphoma
Myeloma
GU
Melanoma
Neuro
PPMC

AUC
0.893
0.878
0.817
0.801
0.862
0.890
0.875
0.814

0.812

[AUC CI]

0.86-0.92]
0.84-0.91]
0.89-0.96)
0.77-0.86)
0.75-0.85]
0.79-0.92]
0.83-0.94]
0.80-0.93]
0.73-0.90]
0.61-0.82]

0.72-0.90]

Penn Medicine
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Pragmatic randomized trial: Intervention

Weekly
SIC Emaill

o Comparative performance of

providers over previous 4 weeks

e Link to list of high-risk patients

» Review list of high risk patients
for following week

« Option to opt out of automatic
text message reminder

Review of

high risk
lists

Automated

 Text reminder on
text morning of clinic

reminders
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Our Outcome

Serious lliness

Adjusted Difference
for Intervention

Adjusted Difference
for Intervention

. Control Intervention  Relative to Control, . Relative to Control,
Conversations Percentage Points Odds Ratio
(95% CI) (95% CI)
All patient 1.3% 4.6% )
encounters  (155/12170) (632/13889) oo (2345 <001 2.02(1.44-2.83)
High-risk patient 3.6% 15.2% ) )
encounters (77/2125) (304/1999) 11.6 (8.2-15.5) <.001 2.72 (1.73-4.28)

& Penn Medicine
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Conclusions and Lessons Learned

+ Automated predictive analytics at the point of care can change
clinician behavior, improve cancer care delivery, and potentially
reduce unwarranted utilization

+ Rigorous solicitation and incorporation of clinician views makes for
a better algorithm

* Prescriptive analytics much more likely to improve care than
predictive analytics

 The intervention is more important than the algorithm

+\We should treat analytics like we do drugs and diagnostics -
subject to rigorous prospective trials

& Penn Medicine 11



Thank you!
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