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Background and Goals

Cancer data sources are fragmented

— Registries: demographics, survival; limited diagnostics, treatment
— Electronic medical records: clinical details, but unstructured text
— Send-out laboratory test results are not integrated into EMRs

Most data sources do not span healthcare settings
We aimed to integrate data sources across healthcare systems

Goals: to enable quality assessment and inform interventions



Contributing Healthcare Systems
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e Two healthcare systems serving the San Francisco Bay Area



Design and Methods
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Patient-level data from:
Statewide California Cancer Registry (SEER Program), EMRs from two healthcare systems and outside genomics labs

Progress to Date (July 2020): >28,000 breast cancer patients, diagnosed 2000-18
40 publications and presentations to date; website: http://med.stanford.edu/oncoshare.html




Results Example: Unwarranted Variation in Care

Use of breast MRI at
diagnosis: highest in
“doctor shopping”
breast cancer patients

2004
Year of Diagnosis

Kurian Cancer 2014; Afghahi JCO Oncology Practice 2016

15% of patients seek care at both
institutions in same area

“Both” patients: no difference in
prognostic factors vs. others

“Both”: more MRI, PET, bilateral
mastectomy, chemotherapy,
radiotherapy (p<0.001), but no
survival difference (p=0.66)

A hot spot of unwarranted
variation in care; may inform
targeted interventions



Results Example: Immune Function and Survival
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Never-lymphopenic

= Ever-lymphopenic Afghahi Clin Cancer Res 2018

Triple-negative breast cancer cohort in Oncoshare: n>1,500, 1/4 died within five years of diagnosis
Investigated peripheral absolute lymphocyte count (ALC), a measure of immune function
Significantly worse survival if ever lymphopenic; could ALC enhance treatment effect?




Results Example: Identifying Metastatic Recurrence
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Banerjee JCO Clinical Informatics 2019

Distant recurrence: a clinically important
endpoint not tracked by registries

Manually annotated 894 randomly selected
patient records: recurrence yes/no, date

Used natural language processing to develop
rule-based and neural network models

Neural network model: 83% sensitivity, 73%
specificity for detecting recurrence and date

Adaptable for cancer types other than breast



Future Plans

e Integration of novel data sources
— Tumor sequencing data from outside laboratories
— Imaging data from EMR
— Patient-reported data from EMR portals

e Partnering with other healthcare systems to validate approaches
— Collaborations with Emory, MIT, Vanderbilt in U.S.
— Koo Foundation Sun Yat Sen Cancer Center in Taiwan

e Consulting with Surveillance Epidemiology and End Results program
— Sharing approaches that may inform SEER registry data integration
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