

Leveraging electronic health records to narrow the divide between research and practice

National Cancer Policy Forum Opportunities and Challenges for Using Digital Health Applications in Oncology: A Virtual Workshop

Neal J. Meropol, MD VP, Head of Medical and Scientific Affairs Flatiron Health

The Challenge

Traditional evidence generation platforms cannot meet the demand for evidence in oncology Clinical trials remain the gold standard, but:

- Current clinical trials infrastructure is cumbersome, costly, and inefficient
- Patients must often travel to participate in research
- Traditional clinical trials are infeasible for rare populations
- Patients enrolled in clinical trials are often not representative of overall cancer population
- Historically, real-world data sources have been most appropriate for hypothesis generation

A solution:

EHR-based platforms for the integration of research and practice

What has changed?

Supply

Health Information Technology for Economic and Clinical Health (HITECH) Act

Privacy and Security Provisions

(Subtitle D of Title XIII of Division A of the American Recovery and Reinvestment Act (ARRA) of 2009)

Demand

COVID-19 and the Need for a National Health Information Technology Infrastructure

FREE

Dean F. Sittig, PhD¹; Hardeep Singh, MD, MPH² > Author Affiliations | Article Information

JAMA. 2020;323(23):2373-2374. doi:10.1001/jama.2020.7239

Policy FDA U.S. FOOD & DRUG FRAMEWORK FOR FDA'S **REAL-WORLD EVIDENCE** PROGRAM

21st Century Cures Act

EHR-based technologies can enable real-time assessment of treatment patterns and outcomes Case Study: PD-1 Inhibitors in Patients with Advanced Non-Small Cell Lung Cancer

How can a real-world data infrastructure support evidence generation in the context of clinical trials?

Case Study: Clinical Trial Patient Ascertainment (aka "Trial Matching")

- Requires digitization of eligibility criteria
- Key criteria not currently available in oncology records as structured data
- Novel analytic approaches can help

	TOTAL, N	Metastatic, n		Non-Metastatic, n			Sensitivity, %	Specificity, %	PPV, %	NPV,
		High-Likely	Likely	Likely	High-likely	Unknown, n				
Overall	66,532	7964	9543	8207	40,111	707	82.4	95.5	89.3	94.0
Tumor type										
Bladder Ca.	3268	132	574	1475	889	198	61.5	97.6	92.4	88.
Breast Ca.	22543	1342	1231	0	19970	0	84.5	98.6	89.3	97.
CRC	10589	1261	1707	728	6893	0	84.5	96.3	90.8	93.
Melanoma	7748	109	1698	1478	4362	101	70.2	96.5	90.8	89.
NSCLC	13554	3013	3151	3490	3492	408	84.0	86.4	87.3	88.
Prostate Ca.	6074	1363	1016	704	2991	0	92.6	93.4	89.5	95.
RCC	2756	744	166	332	1514	0	88.1	95.9	91.9	93.

Machine Learning can be applied to identify patients with metastatic disease (Kirshner et al. ASCO 2020)

Case Study: Association of FDA Label Restriction with Treatment Patterns in Patients with Bladder Cancer

The value of real-time assessment

Parikh RB et al. JAMA. 2019

Learnings during a pandemic

Bobby Green, Flatiron Health, "ASCO-ONS Webinar Series: May 28, Data Insights on the Impact of COVID-19 Pandemic on Cancer Care," May 28, 2020. An opportunity for decentralized clinical trials

- Patient data may be collected in real time
- Centralized data collection is feasible
- Telemedicine can scale

Case Study: A Prospective Clinico-genomic Study in Patients with Advanced Non Small Cell or Small Cell Lung Cancer

Primary objective: feasibility

- Secondary objective: ctDNA biomarker exploration
- "Routine" and "Intentional" data collection
- Clinical, genomic, and imaging data

Lu MW et al. ASCO 2020.

Bridging the chasm between research and practice

Interventional Research

Key Requirements

- Common data model
- Interoperability
- Transparent adherence to regulatory and ethical frameworks
- Data quality standards
- Stakeholder collaboration

Thank you

