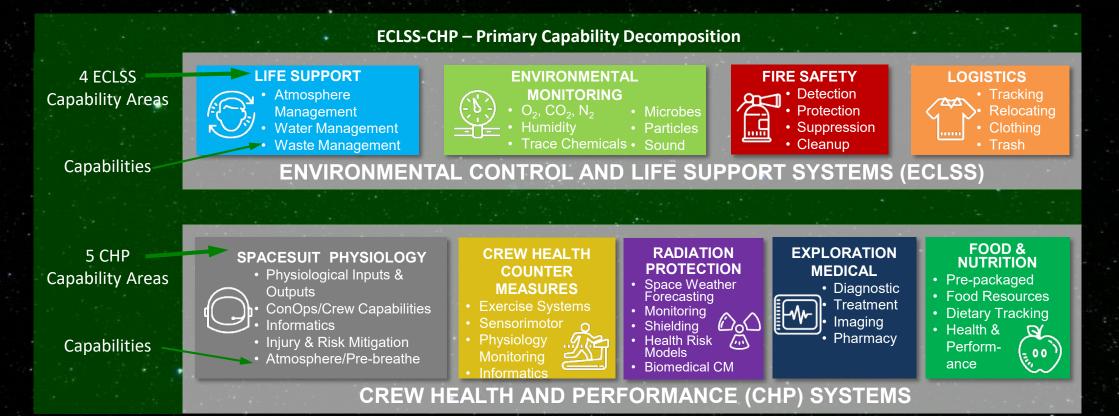
National Aeronautics and Space Administration

Environmental Control and Life Support Systems – Crew Health and Performance Future Research Needs

STMD Decadal Survey on Biological and Physical Sciences Research in Space 2023-2032 Committee Meeting – 9/14/2022

James Broyan

System Capability Leadership Team (ECLSS-CHP SCLT) Leader


What are ECLSS-CHP Systems?

- The systems and technologies that keep our astronauts healthy and productive while living and working in space
- 9 Capability Areas are further decomposed to capabilities and sub-capabilities to define gaps

ECLSS-CHP SCLT Capability Areas and Capabilities

- Capability areas are divided into 25 technology development roadmaps
 - Roadmaps capture development, tech demos, validation, reliably testing and mission infusion targets
 - Roadmaps are directorate (e.g. ESDMD, SOMD, STMD) and program (EC, ISS, HRP, GCD) agnostic
- ECLSS-CHP has 87 ESDMD Capability Integration Team (CIT) recognized gaps plus numerous related gaps

ECLSS-CHP Envisioned Future Decomposition by Capability Area

(Mission need) • L = Lunar surface • T = Transit to Mars • M = Mars surface

LIFE SUPPORT

- Reliable long-duration life support with Earth independent diagnostics and repair (L,T,M)
- >20% reduction in spares and installed mass (T)
- Enable single missions >800 days w/o resupply (T)
- Repeated missions with >9 months dormancy (L,T,M)
- >75% oxygen recovery at 2 mm-Hg CO_2 (T)
- High pressure oxygen recharge for EVA (L,M)
- >98% water recovery (L,T,M)
- Remove respirable lunar and Mars dust (L,M)
- Planetary protection compatible ECLSS venting (M)

EVA PHYSIOLOGY

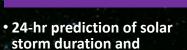
- 100% of tasks within human performance (L,T,M)
- Predict and mitigate decompression sickness (L,M)
- Predict and mitigate of suit or EVA injury (L,M)
- 6 Major physiological informatics parameters provided in-suit to enable real time self assessment or loss of communication areas (L,M)

ENVIRONMENTAL MONITORING

- Identify and quantify chemical (>12 water, >33 air) and microbial species in-flight with out sample return (L,T,M)
- Ability to detect unknown constituents (T,M)
- Distinguish between fire, habitat dust, and surface dust particles (L,M)
- Support forward and backward planetary protection detection (both microbial and non-culture techniques) (M)

- Test-verified partial gravity flammability characteristics and countermeasures (L,M)
- ECLSS compatible fire suppression (L,T,M)
- Reduce post fire clean-up time (L,T,M)
- Common fire safety strategy across element architectures (L,T,M)

(L,T,M)



- Jettison >90% of trash mass during Mars transit (T)
- Mars trash disposal compatible with planetary protection (T,M)
- In-flight autonomous logistics (L,T,M)
- Reducing clothing and wipes mass by >50% (L,T,M)
- Clothing flammability (and other non-metallics) >36% O2 (L,M)

- Reduce mass and volume
- (L,T,M) Maintain/monitor fit
- Maintain/monitor fitness inflight to enable unassisted landing egress & EVA (L,T,M)
- Validated lunar and Mars fitness standards (L,M)

- storm duration and intensity to >90% (L,T,M)
- High energy neutron detectors (L,T,M)
- Earth independent monitoring/forecasting (T,M)
- GCR shielding (T,M)

In-flight diagnostics and

treatment for 100 of 120

medical risk conditions

Autonomous medical

support systems (T, M)

skill and & decision

FOOD & NUTRITION

- 100% of nutrient stability >5-year shelf life (T,M)
- Food acceptability >90% (L,T,M)
- <30% launched water content (T,M)
- Exploration countermeasure in-flight nutrition intake monitoring (L,T,M)

BPS Research and development needs for SCLT envisioned futures

Requests for BPS	Synergism	ECLSS-CHP SCLT needs
Study how physical characteristics and human/crop life interacts in the ug and partial gravity environments; and lower pressure/higher oxygen habitats	Coordinate research, solicitations, and projects to close knowledge gaps, identify novel phenomena for technology development	Identify, characterize and mitigate the risks to life support systems human health and performance in space
 Flowing gas/liquid/porous media and surface interactions Flammability, combustion physics testing and modeling in partial-g Exterior to habitat microbial transport modeling in ug and partial-g surfaces Biofilm prevention mechanisms Cryogenic gas separation Plant topics Hyperspectral imaging Moisture/multiple-growth-cycle impacts on microbiome Water/nutrient management Leafy/fruiting cultivator evals Radiation interactions with stored crew consumables/crops/crew 	 Multiphase flow research Lunar surface flammability/ combustion research facilities External ISS and lunar lander microbial characterization Multiyear biofilm research Use of permanently shadowed regions Novel crop development Crop health monitoring research Leafy/fruiting/microgreen cultivator evals Plant growth research facilities (media, aeroponics/hydroponics) Radiation/microgravity interactions Non-earth centric radiation monitoring/modeling/warning 	 Gas/liquid separator, pressure drop in 2-phase flow heat exchangers, filter performance Improved flammability materials selection and reduced vehicle risk Emergency response upgrades Life support accommodations for planetary protection Improved life support dormancy Novel cabin gas separation/trace gas removal Crop/food production facilities Space radiation countermeasures Crew health countermeasure systems Exploration medical diagnostic and treatment systems
Science identifying possible issues, enhancing, or enabling phenomena	Capabilities More basic More applied	Technology maturation to close known gaps

White papers submitted to BPS decadal the support ECLSS-CHP needs

Direct support of ECLSS-CHP needs

- 1. Challenges and Research Needs for Micro- and Partial-Gravity Fires (Lead: Ya-Ting Liao)
- 2. Recommendations for Fire Extinguisher Research for Crewed Missions (Lead: John Easton)
- 3. Spacecraft Materials Fire Safety (Lead: Fletcher Miller)
- 4. Research Questions and Challenges for Improved Spacecraft Fire Detection (Lead: Claire Fortenberry)
- 5. Solid Fuel Combustion in Partial and Micro-Gravity (Lead: Michael Gollner)
- 6. Recommendations for Spaceflight Research to Enable Crop Plant Growth Systems for Exploration (Lead: Alexandra Whitmire)
- 7. Spaceflight Food System: Impacts to Nutritional Adequacy, Health, Performance, and Resources in Space Exploration (Lead: Grace Douglas)
- 8. Microbial Food Safety in Space Production Systems (Lead: Jessica Lee)
- 9. Elevating the Use of Genetic Engineering to Support Sustainable Plant Agriculture for Human Space Exploration (Lead: Natasha Haveman)
- 10. What to Take? When to Make? How to Break Even? Avoid Mistakes in Microbial Bio-manufacturing in Support of Human Near-to-Deep Space Exploration (Lead: Nils Averesch)
- 11. Planetary Protection Knowledge Gaps and Enabling Science for Crewed Mars Missions (Lead: J Andy Spry)

• HRP related submissions that support ECLSS-CHP needs

- Greater understanding at the fundamental science levels can lead to more targeted and efficient applied biomedical solutions
 - Provides input for SCLT technology development to close exploration gaps
- 1. Vision for the Next Generation of Spaceflight Microbiology: Human Health and Habitat Sustainability (Lead: Mark Ott)
- 2. The Need for Biological Countermeasures to Mitigate the Risk of Space Radiation-Induced Carcinogenesis (Lead: by Broc Sishc)
- 3. Development of Medical Capabilities & Tech for Health Monitoring, Diagnostics, & Treatment during Human Exploration Spaceflight (Lead: Shean Phelps)
- 4. Enabling a Precision Health System for Deep Space Exploration (Lead: Corey Theriot)