

NAS Planetary Science and Astrobiology Decadal Survey Exploration Strategies for Venus

Radio Technologies

Potential Radios for Venus Missions

M. Michael Kobayashi July 14, 2021

© 2021 California Institute of Technology. Government sponsorship acknowledged. This document has been reviewed and determined not to contain export controlled technical data. Pre-Decisional Information – For planning and discussion purposes only

Outline

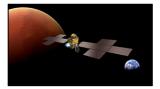
- JPL Software Defined Radios
- Radio Product Overview
- Electra UHF Transceiver
- Universal Space Transponder
- Mars Relay Network
 - Assets
 - Overview
 - Status
- Venus Telecom Subsystem Concept
- Challenges and Considerations

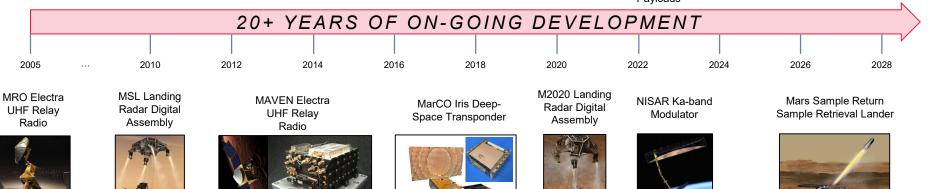
JPL Flight Software Defined Radio Developments

MSL Electra-Lite

UHF Relay Radio

CoNNeCT S-band Radio


TGO Electra **UHF Relay Radio**


M2020 Electra-Lite **UHF Relay Radio**

Iris Transponders for Artemis Secondary Payloads

Mars Sample Return Earth Return Orbiter

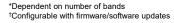
Radio Product Overview

Electra	<i>Electra UHF Transceiver (EUT)</i> UHF relay radio for orbiters/motherships	 At TRL-9 for earlier MRO, MAVEN, TGO versions New version in development for MSR using latest UST digital hardware and upgrades (FM target completion: 2023Q3)
	E. Satorius, et al., "The Electra Radio" in Autonomous Software-Defined Radio Receivers for Deep Space Applications, P	asadena, Jet Propulsion Laboratory, 2006, ch. 2, pp. 19-43.
	<i>Electra-Lite UHF Transceiver (ELT)</i> UHF relay radio for landers/rovers/probes	 At TRL-9 for earlier MSL, M2020 versions UST-XU (below) likely to replace ELTs in future designs
	L3Harris Technologies, "Mars Electra-Lite UHF Transceiver," 2021. [Online]. Available: https://www.l3harris.com/all-cap	abilities/mars-electra-lite-uhf-transceiver. [Accessed: 5-Jul-2021].
	UST – X-band/UHF (UST-XU) Dual-band radio: UHF relay and X-band DTE/DFE	 New version in development for MSR using latest UST digital hardware, UST X-band design, and heritage ELT design FM target completion: 2024Q4
UST	UST – Deep-Space (UST-DS) Dual-band radio: S/X-band DTE/DFE	 Demonstrated TRL-6 with EM unit Used as the basis of all other UST variants
	M. Pugh, et al., "The Universal Space Transponder: A next generation software defined radio," in IEEE Aerospace Conf.,	Big Sky, MT, USA, 2017, Mar., doi: 10.1109/AERO.2017.7943866.
	UST – Ka-band Modulator (UST-KaM) High-rate Ka-band transmitter (25.5-27.0 GHz band)	 2 Gbps OQPSK version delivered to NISAR (TRL-8) Higher rates (up to 4 Gsps) and higher modulation can be supported with firmware updates
	M. Pugh, et al., "High-Rate Ka-Band Modulator for the NISAR Mission," in IEEE Aerospace Conf., Big Sky, MT, USA, 2018,	3-10 March, doi: 10.1109/AERO.2018.8396451.
	UST – Lite (UST-Lite) Miniaturized relay/DTE/DFE radio (Quad band)	 In R&D, targeting TRL-5 by Sept. 2021 Can support up to 4 RF bands simultaneously (eg: S/X/K/Ka) Miniaturized for SmallSat applications; configurable
Iris	<i>Iris Deep-Space Transponder</i> X-band DSN-compatible CubeSat Transponder	 At TRL-9 from MarCO, first interplanetary CubeSat to Mars Targeted for higher risk missions (e.g. tech demos, Class-D) Delivered to multiple Artemis secondary payloads
14 Jul 2014	M. M. Kobayashi, et al, "The Iris Deep-Space Transponder for the SLS EM-1 Secondary Payloads," in IEEE Aerospace and	Electronic Systems Magazine, vol. 34, no. 9, pp. 34-44, 1 Sept. 2019. doi: 10.1109/MAES.2019.2905923

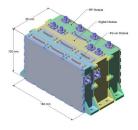
Electra UHF Transceiver

Parameter Electra UHF Transceiver (EUT)		Electra-Lite Transceiver (ELT)	UST-XU (UHF Relay portion)
Frequency Band (MHz)	390-405; 435-450	390-405; 435-450	390-405; 435-450
Data Rates	10 bps – 37.5 Mbps supported* 1 – 2048 kbps planned for MSR	1, 2, 4, 8,, 4096 ksps	10 bps – 37.5 Mbps supported* 1– 2048 kbps planned for MSR
Modulation Schemes	Manchester, NRZ-L, BPSK, QPSK	Manchester, NRZ-L, BPSK, QPSK	Manchester, NRZ-L, BPSK, QPSK
Error Correction Coding	Conv (k=7, r=1/2), RS, LDPC	Conv (k=7, r=1/2), RS, LDPC	Conv (k=7, r=1/2), RS, LDPC
Receiver Noise Figure	FD: 4.9 dB; HD: 3.9 dB	FD: 4.0 dB (2 dB typ), HD: 3.9 dB (1.8 dB typ)	FD: 4.0 dB (2 dB typ), HD: 3.9 dB (1.8 dB typ)
Transmitter RF Power (min)	FD: 5.0 W; HD: 7.0 W	FD: 8.5 W; HD: 10.7 W	FD: 8.5 W; HD: 10.7 W
Protocols	CCSDS Prox-1, USLP ⁺	CCSDS Prox-1, USLP [†]	CCSDS Prox-1, USLP [†]
Mass/Dimensions	5.3 kg; 21.7 x 24.5 x 11.6 cm	3.0 kg; 20.3 x 13.1 x 11.9 cm	6.0 kg; 20.0 x 24.5 x 13.0 cm (UHF+X)
DC Power (Rx, Tx/Rx incl'd PA)	23.9 W, 75.3 W	18.5 W, 65.0 W	20.6 W, 73.0 W
Total Ionizing Dose Radiation	50 krad*	20 krad	50 krad*
Processor/FPGA 66 MHz AT697F SPARC V8; Virtex X0		24 MHz TSC695F SPARC V7; Virtex XQ2V	66 MHz AT697F SPARC V8; Virtex XQR5V*
Command/Data Interface	MIL-STD-1553B/SpaceWire*	MIL-STD-1553B/LVDS	MIL-STD-1553B/LVDS
Additional Supported Features	Open-Loop Sampling (100 KSPS) Adaptive Data Rate (VCM) FDMA up to 2 channels*	Open-Loop Sampling (100 KSPS) Adaptive Data Rate (VCM)	Open-Loop Sampling (100 KSPS) Adaptive Data Rate (VCM)

*New feature for MSR campaign [†]Configurable with firmware/software updates

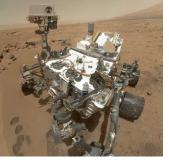


ISO	Diple	exer		
ι	IHF RF Modul			
X-band RX X-ba			nd TX	
Digital	Processor M			
Pow	ver Supply	UH	FAmp	asa.gov


Universal Space Transponder

Parameter	UST Deep Space (UST-DS)	UST Ka-band Modulator (KaM)	UST-XU (X-band portion)	UST-Lite (in development)
Frequency Band	S (2.2-2.3 GHz); X (7.2/8.4 GHz)	25.5-27.0 GHz	X (7.2/8.4 GHz)	Up to 4 config. bands (eg: S/X/K/Ka)
Uplink Rates	7.8125 bps – 37.5 Mbps	N/A (transmit only)	7.8125 bps – 37.5 Mbps max	7.8125 bps – 1 Gbps max*
Downlink Rates	10 – 300 Mbps	0.5, 1.0, 2.0, 4.0 Gbps [†]	10 – 300 Mbps max	10 bps – 1 Gbps max*
Modulation Schemes	Manchester, NRZ-L, BPSK, QPSK	OQPSK, 8PSK [†] , 16APSK [†]	Manchester, NRZ-L, BPSK, QPSK	Manchester, NRZ-L, BPSK, QPSK
Error Correction Coding	Conv (k=7, r=1/2), RS, Turbo, LDPC	LDPC-7/8	Conv (k=7, r=1/2), RS, Turbo, LDPC	Conv (k=7, r=1/2), RS, Turbo, LDPC
Receiver Noise Figure	2.1 dB	N/A (transmit only)	2.5 dB	2.5 dB (typ for S/X band)
Receiver Sensitivity	-160 dBm @ 20 Hz LBW	N/A (transmit only)	-160 dBm @ 20 Hz LBW	-160 dBm @ 20 Hz LBW
Mass/Dimensions	5.4 kg; 20.0 x 24.5 x 15.9 cm	4.4 kg; 20.0 x 24.5 x 11.4 cm	6.0 kg; 20.0x24.5x13.0 cm (UHF+X)	1.5 kg; 16x10x10 cm (single band*)
DC Power	65 W (Tx/Rx dual band)	40.0 W (transmit only)	30.0 W (Tx/Rx single band)	20 W (single band*)
Processor/FPGA	AT697F SPARC V8; Virtex XQR5V	AT697F SPARC V8; Virtex XQR5V	AT697F SPARC V8; Virtex XQR5V	Leon-FT; Kintex XQRKU060
Command/Data Interface	MIL-STD-1553B/LVDS/SpaceWire	MIL-STD-1553B/SERDES	MIL-STD-1553B/LVDS	SpaceWire or RS-422/LVDS
Technology Readiness Level	TRL-6	TRL-8; TRL-9 by 2023	TRL-6; TRL-8 by 2024	TRL-5 by Sept. 2021

ISO		Dipl	er			
X-band RX X-band T					nd TX	
Digital Processor Module (Dual-band)						
Po	wer	UH	F Amp			


6 jpl.nasa.gov

Mars Relay Network Assets

Orbiters

_anders

MSL

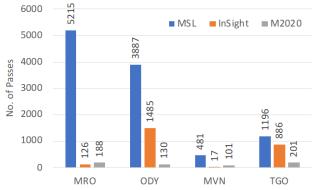
InSight

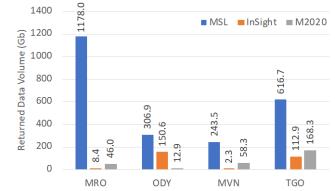

Mars 2020

ExoMars 2022 jpl.nasa.gov

14 Jul 2014

Mars Relay Network Overview

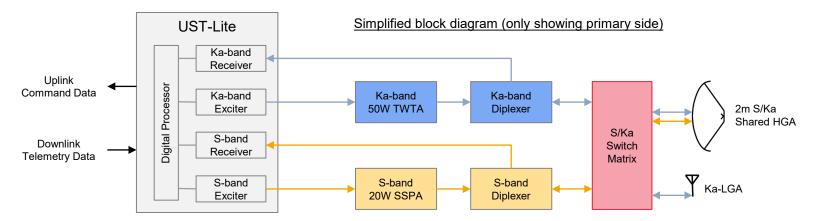



- Calculates data delivery times relative to relay sessions (i.e. latencies)
- Identifies relay session planning and coordination conflicts.
- Provides a single, standardized point-of-entry and repository for all relay planning and coordination data
- Is entirely data driven and can be instantiated for any similar relay network.

MaROS

Mars Relay Operations Status

Orbiter	Orbit	Radio	ADR	Max Rate	LDPC	Notes
MRO	Sun sync	Electra	Yes	2 Mbps	Capable	Time-div split relay MSL/M2020 Consistent overflight & shift planning
ODY	Sun sync	CE-505	No	256 kbps	No	CE-505 is not re-programmable Consistent overflight & shift planning
MVN	Elliptical	Electra	Yes	2 Mbps	Equipped	Long overflight; shifts sol-to-sol LDPC upgrade: +3 dB link margin
TGO	Areocentric	Electra	Yes	2 Mbps	Planned	Long overflight; shifts sol-to-sol Time-div split relay MSL/M2020



Total Returned DV: MSL: 2.345 Tbits InSight: 274.3 Gbits M2020: 285.6 Gbits

Venus Telecom Subsystem Concept

- UST-Lite S/Ka dual-band configuration
- Ka-band DTE/DFE Comm
 - Venus-Earth distance: 1.7 AU max, 0.3 AU avg
 - Ka-HGA for nominal + Ka-LGAs for safe-mode
 - 50-100 watt TWTAs currently available from suppliers
- S-band Relay Comm
 - Orbiter avg altitude: ~35,000 km; During EDL, assume 120,000 km max slant range (example from a Venus balloon study)
 - Assume S-HGA on orbiter can be pointed to S-LGA on lander (simplifies comm if lander does not need to locate the orbiter)
 - 20 watt SSPA easily feasible today; higher power SSPAs using latest GaN devices possible

Venus Telecom Link Performance

Ka-band DTE/DFE	0.3 AU		1.7	AU	1.7 AU (Safe Mode)	
Link	Uplink	Downlink	Uplink	Downlink	Uplink	Downlink
Supported Data Rate	2 kbps	25 Mbps	2 kbps	750 kbps	125 bps	10 bps
Link Margin	> 50 dB	3 dB	> 35 dB	3.3 dB	4.4 dB	5.6 dB
S/C Antenna	HGA		HGA		LGA	
S/C Ant Gain	54.5. dBi	54 dBi	54.5. dBi	54 dBi	8.7 dBi	9 dBi
DSN Antenna	34 m		34	m	34	l m
DSN EIRP or G/T	152 dBm	58.4 dB/K	152 dBm	58.4 dB/K	152 dBm	58.4 dB/K

Note: Uplink up to 2 kbps was investigated but higher rates could be supported with new DSN upgrades for LDPC encoded uplink

S-band Relay	35,000 km (Nom. Orbit)	120,000 km (EDL)		
Link	FWD to lander RTN to Orbiter		FWD to lander	RTN to Orbiter	
Supported Data Rate	5 kbps 6 kbps		500 bps	500 bps	
Link Margin	10 dB	10 dB	10 dB	10 dB	
S/C Antenna	HGA		HGA		
S/C Ant Gain	30.7 dBi	30.3 dBi	30.7 dBi	30.3 dBi	
Lander Ant Gain	4 dBi	5 dBi	4 dBi	5 dBi	

- MRO orbit is 250-316 km, compared to much higher orbits at Venus
- EDL typically at 8 kbps, but longer slant range for Venus reduces data rate capability
- Nominal orbit also shows lower data rates compared to Mars relay

Challenges and Considerations

- Lander-Orbiter range is critical in 1/r² power-distance relationship
- Venus lander electronics likely will need to be cooled
 - Antennas could be designed for high-temperature operation
 - SSPAs are typically 30-40% efficient at S-band; high thermal dissipator, especially if higher transmit power is desired
- Using an LGA on the lander side will simplify the telecom design so that the lander does not need to locate the orbiter in the sky
- Electra Radio has been the work horse for Mars relay, but currently only supports UHF. Sband version would need to be developed, but the more agile UST platform may be the ideal solution to merge DTE/DFE and relay comm into one radio package (similar to UST-XU for MSR)
- Similar relay service to the Mars Relay Operations Service (MaROS) can be developed for orbiters at Venus to support future landed assets, balloons, and probes

jpl.nasa.gov