

Regulatory Considerations for Tissue Agnostic Development

Steven Lemery, MD, MHS Associate Director, Division of Oncology Products 2

A regulator's perspective on the MSI-H/MMRd tissue agnostic approval of pembrolizumab

ASCO 2015 (Study KN016)

- irORR (Le et al., 2015)
 - 4 of 10 (CRC)
 - 7 of 9 (non-CRC)
- GI oncology monotherapy approvals:
 - Regorafenib (CRC) 2012
 - Ramucirumab (gastric) 2014
 - TAS-102 (CRC) 2015

adapted from Le et al., NEJM, 2015

Mismatch repair deficiency (dMMR): Usually results in microsatellite instability

Keijzers, et al., NEJM, 2017

- Causes of dMMR:
 - Mutation in DNA repair proteins
 - e.g., Lynch syndrome
 - Inactivation of DNA repair proteins
- (usually) diagnosed with IHC

Microsatellite Instability (MSI-H)

Measurable "phenotype" of dMMR

- Microsatellite = short repeats of DNA
- Length variable from person to person
- MSI can occur with spontaneous gains or loss of nucleotides in microsatellites
- Detect with PCR or NGS
- MSH-H associated with increased tumormutation burden

MSI-H in different tumor types

(Partial) development timeline

Background: data supporting pembrolizumab MSI-H/dMMR approval

	N	ORR N (%)	95% CI
CRC	90	32 (36%)	(26, 46)
Non-CRC	59	27 (46%)	(33, 59)
Endometrial	14	5 (36%)	(13, 65)
Biliary	11	3 (27%)	(6, 61)
Gastric/GEJ	9	5 (56%)	(21, 86)
Pancreatic	6	5 (83%)	(36, 100)
Small Int.	8	3 (38%)	(9, 76)
Breast	2	PR, PR	
Prostate	2	PR, SD	
Bladder	1	NE	
Esophageal	1	PR	
Sarcoma	1	PD	
Thyroid	1	NE	
Retroperitoneal	1	PR	
SCLC	1	CR	
RCC	1	PD	

KM-DOR in 59 responding patients

At time of approval, responses observed in *at least* 14 MSI-H/dMMR tumor types; many ongoing

Pembrolizumab MSI-H approval considerations

- Biology
- Clinical data
- Approved for patients without available therapies (unmet need)
- Post-approval requirements

Adapted from Yarchoan et al., NEJM 2017

ORR vs. TMB

Unique TA development considerations

- 1. Pediatrics
- 2. In Vitro Diagnostic Devices (IVD)
- 3. Disease vs. indication
- 4. Drug development considerations

Pediatrics

Examples of biomarker-positive tumors in children

- MSI-H/MMRd (CMMRd-related cancers)
- NTRK-fusion (infantile fibrosarcoma, papillary thyroid, mesoblastic nephroma)
- ALK-fusion (lymphoma, myofibroblastic tumors)
- ROS-1 (myofibroblastic tumors)

Anti-PD-1 in congenital mismatch repair deficiency (CMMRd)

- Although rare, patients potentially can benefit
 - Risk of CNS swelling (T2 flair images) in highgrade GBM
 - Limitation of use and PMR for pediatric CNS tumors

Adapted from Bouffet et al., JCO, 2016 (gadolinium enhanced T1 sequences)

Tissue agnostic IVD considerations

- Pembrolizumab
 - Clinical experience with IHC/PCR testing
 - PMCs for IVDs
- Assess performance across tumors
- Is more than one device desirable, e.g.?
 - NGS for rare biomarkers
 - IHC (or other) if high prevalence

MSI testing CRC vs endometrial

Kuisman et al., Am J Path, 2002

- Differences in allelic shifts in CRC vs. EC in certain BAT markers
- May influence sensitivity of PCR

Is MSI-H/MMRd a new disease state?

Arguments for MSI-H as one disease

MSI-H tumors share

- Histological characteristics, e.g.,
 - Lymphocytic infiltration
 - Medullary-type patterns
- Increased TMB, and
- Response to checkpoint inhibition

Alexander et al., Am J Pathol. 2001

Le et al., Science, 2017

Arguments against a tissue agnostic indication as a single disease

- MMRd not only molecular finding
 - Other oncogenic aberrations may differ in different cancers
- Differences in natural history, e.g.,
 - FOLFOX
 - A treatment for colon cancer
 - Unlikely to be effective for GBM
 - NTRK-positive infantile fibrosarcoma ≠ NTRK-positive NSCLC

Development / Regulatory Considerations

- Uncertainty regarding effects on different tumor types
- Could impact trials of the drug in non-biomarker selected patients
- FDA has used principles of TA development to support non-TA approvals
- Other

FDA applied principles of TA development to BRAF/MEK inhibitors

- NSCLC (D+T), n = 93
- Anaplastic thyroid cancer (D+T), n = 23
- Erdheim-Chester Disease (V), n = 22

Tissue Agnostic Development Considerations

- Randomized controlled trials in rare biomarker (+) tumor types with unprecedented effects on response
 - May not be feasible
 - Probably not ethical in refractory setting
- - e.g.,
 - Melanoma
 - NSCLC

Future challenges with TA development (what if biomarker is quantitative?)

Other challenges

Other Questions

How many tumors???

Different pathways?

- Fast Track
- Breakthrough
- Accelerated approval

How will TA approval impact development for biomarker negative populations?

e.g., should patients with "neo-antigen" positive tumors be excluded from clinical trials of single agent checkpoint inhibitors?

- If not, how to assess whether an effect is driven solely by biomarker-positive population?
- At a minimum, the biomarker should be identified in these trials.
- What if the investigational drug was a cytotoxic drug or a multi-target TKI?
 - Presence of the biomarker may not matter

Hypothetical Example

- ORR in biomarker "+" tissue agnostic population = 50%
- How to consider results or design of randomized trials in a single cancer type (non-biomarker selected) with
 - ORR of 1% in biomarker negative group
 - ORR of 5% in biomarker negative group
 - ORR of 10%, in biomarker negative group, etc.
- <u>And</u> a biomarker "+" incidence rate in that cancer type of
 - 1%
 - 5%
 - 10%
 - 30%, etc.

Summary

- Facilitated faster access for patients with unmet need
- Was granted without every tumor type being studied
 - Including children
 - Post-marketing data forthcoming
- Was granted without a companion in vitro diagnostic device — PMCs
- Created new opportunities *and* challenges

Acknowledgments

- Office of Hematology and Oncology Products
 - Richard Pazdur, M.D.
 - Patricia Keegan, M.D.
 - Leigh Marcus, M.D.
 - Sandra Casak M.D.
 - Damiette Smit, M.D.
 - Amy McKee, M.D.
 - Ashley Ward, M.D.
 - Gideon Blumenthal, M.D.
 - Sharon Sickafuse
 - Monica Hughes, M.S.
 - Melanie Pierce

- Office of Biostatistics
 - Yuan, Weishi (Vivian), Ph.D.
 - Lisa Rodriguez, Ph.D.
- Center for Devices and Radiological Health
 - Janaki Veeraraghavan, Ph.D.
 - Donna Roscoe, Ph.D.
 - Reena Philip, Ph.D.