

Eastman – Perspectives on New Nuclear

Lisa Lambert, Site Energy Coordinator and Group Leader, Global Natural Resource Management David Bustetter, Strategy and Compliance Manager, Power Department, Utilities Division July 20, 2021

A global industry leader

- Fortune 500 specialty materials company with 2020 revenue of ~\$8.5B
- Global manufacturer and marketer of advanced materials and specialty additives
- Operates four business segments
- Global team of ~14,500
- Serving customers in >100 countries

MITIGATING CLIMATE CHANGE

Eastman will:

- Reduce our absolute GHG Scope 1 and 2 emissions by one-third by 2030 to achieve carbon neutrality by 2050
- Comprehensively understanding our downstream Scope 3 footprint and developing a strategy that begins to address it in 2021
- Innovate to provide products that enable energy savings and greenhouse gas reduction down our value chains and at the consumer level

Kingsport, Tennessee Manufacturing Site (TNO)

- The Tennessee Operations (TNO) site is Eastman's largest manufacturing facility worldwide, covering approximately 900 acres.
- TNO produces a variety of chemicals, fibers, and plastics and also serves as the worldwide headquarters for Eastman.
- The facility began operating its first CHP system in 1920's and continued adding to the system until its last expansion in 1993.
- TNO is located approximately two miles from Kingsport city's downtown area.

Power Department Operations

- Four Powerhouses
 - 17 Boilers
 - 19 Turbine-Generators
 - 13,800V Electric distribution
- Similar in size to 700 MW station
 - Coal
 - Natural gas
 - Waste-to-Energy
- Combined Heat & Power
 - Cogenerating steam + power
 - ~ 3,600,000 lbs/h steam
 - ~ 170 MW electricity
- Purchase additional 15 MW from local utility

Physical Locations within Plant Site

78 76 74 72 70

Steam & Electricity at TNO

- Combined heat and power (CHP) is used to simultaneously produce multiple forms of energy from coal and natural gas fuels
- Thermal steam/mechanical load ~3.6 Mlbs/hr
- Electric power is only 12% of the TNO power system energy demand
- CHP using boilers and TGs is the most cost effective and environmentally sound method of meeting energy needs for TNO
- Steam pressure/temperatures
 - -600 psig steam header/750° F
 - -100 psig steam header/375° F
 - -15 psig steam header/260° F

7

AEP (~10%) Air -Steam **Boilers** Water • Electricity TG Fuel · use in plant 600 psig steam **Boiler inputs controlled** demand in plant by DCS to maintain steam pressure TG Flow controlled by pressure steam generated = steam demand * venting occasionally necessary to help balance TG High efficiency is maintained by controlling purchased energy use to match plant utility demand TG EASTMAN

Steam and electricity generation at TNO

Current System Configuration

Integrated Energy System (IES) Investigation

- Eastman consistently evaluates opportunities to reduce emissions and conserve energy
- Eastman received Department of Energy Office of Nuclear Energy voucher in late 2018 funded through Gateway for Accelerated Innovation in Nuclear (GAIN)
- Funding provided to Oak Ridge National Lab (ORNL)
- Purpose to assist Eastman in evaluating potential deployment scenarios of IES at the Kingsport site
- Full report included in pre-read

Feasibility Study Findings

- Reactor Technology and Simulation
 - Current light water reactors are too large
 - Small modular light water reactors cannot meet steam temperature and pressure requirements by themselves
 - Advanced reactors could meet temperature and pressure needs but still have a need to respond to rapid load changes
 - Load response needs (could swing 200k to 300k lbs./hr. within 30 minutes) still require some fossil capability

EASTMA

Feasibility Study Findings

- Operational Reliability
 - Eastman's power system operates with high redundancy
 - Six small modular reactors required to provide needed reliability while allowing module to be down for refueling

Siting requirements

- Under current siting guidance, issues exist due to population around the plant site and hazardous operations risks
- More advanced reactor technology and new siting guidance needed to eliminate siting issues
- Economic Analysis involves significant amount of uncertainty

EASTMAN

Summary

- Needed technology is still under development
- Current technology will require fossil to meet desired steam conditions
- Current siting requirements make placement at site impossible
- Solution is very capital intensive rough order of magnitude \$2.5B-\$3.6B

Questions?