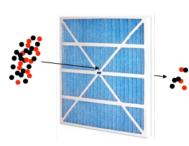
Filtration and Air Cleaning for Airborne Pathogens


Brent Stephens, PhD

Professor and Department Chair

Arthur W. Hill Endowed Chair in Sustainability

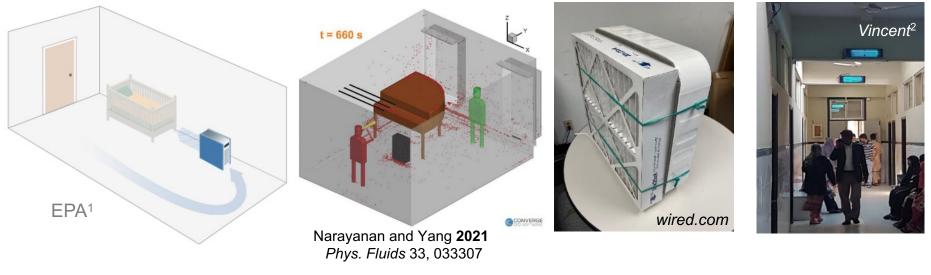
Department of Civil, Architectural, and Environmental Engineering

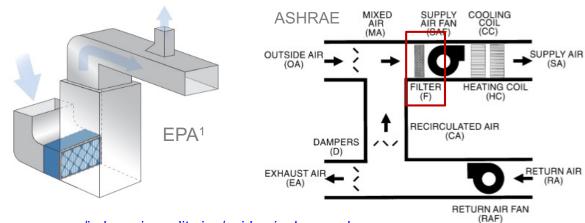
Illinois Institute of Technology, Chicago, IL

ILLINOIS TECH

Civil, Architectural, and Environmental Engineering

The Built Environment Research Group


advancing energy, environmental, and sustainability research within the built environment at Illinois Institute of Technology


web <u>www.built-envi.com</u> email <u>brent@iit.edu</u> twitter @built_envi

Two main types of air <u>cleaners</u>

Portable/stand-alone/in-room air cleaners

In-duct air cleaners (HVAC)

¹ <u>https://www.epa.gov/indoor-air-quality-iaq/guide-air-cleaners-home</u> ² Vincent, 2020, Upper-room UVGI Air Disinfection, National Academies of Sciences

Many types of air cleaning technologies

"Subtractive" technologies

Mechanism of action: Removing or inactivating targeted contaminants (e.g., pathogens) from indoor air when they come in contact with the technology

Key parameters:

- Single-pass removal efficiency
- Airflow rate
- Airflow rate vs. space volume
- Runtime
- Potential for byproduct formation (e.g., O₃ w/ ESP)

Examples: filters, electrostatic precipitators (ESPs), ultraviolet germicidal irradiation (UVGI)

"Additive" technologies

Mechanism of action: adding constituents (e.g. ions or reactive compounds) to the air to remove particles, inactivate microorganisms

Key parameters:

- Type and amount of additives
- Potential toxicity of additives
- Potential for byproduct formation (particles/gases) and toxicity of byproducts

Examples: ionizers, ozone, plasma, hydrogen peroxide, hydroxyl, reactive oxygen species

Some air cleaners use a combination of technologies

Filtration (+ some air cleaning technologies) can remove particles in air

Some air cleaning technologies can <u>inactivate</u> pathogens in air

Ventilation in Buildings

- Improve central air <u>filtration</u> (more = better)
- Use portable <u>HEPA</u> fan/filtration systems
- Supplement with <u>UVGI</u> when ventilation/filtration options are limited

https://www.cdc.gov/coronavirus/2019-ncov/community/ventilation.html

ASHRAE EPIDEMIC TASK FORCE

Ventilation, filtration, air cleaning

- Minimum outdoor air (OA) flow rates
- Use <u>MERV 13</u> or better filters
- Only use air cleaners for which <u>evidence</u> of <u>effectiveness</u> and <u>safety</u> is clear

https://www.ashrae.org/technical-resources/resources

How do you know if a technology is effective and safe?

1. Seek performance data

Ideal	Potentially Useful	Worst
Standard test methods and metrics	Non-standardized test methods and metrics	No performance data of any kind
Independent tests and/or peer-reviewed literature	Manufacturer-provided tests and literature	

Standard test methods and metrics:

Efficacy:

In-duct filters/air cleaners:

Single-pass removal efficiency (%): MERV, ePM, HEPA, FPR, MPR (filters) ASHRAE Standard 185.1 (UV)

Portable/stand-alone air cleaners:

Clean Air Delivery Rate (CADR, ft³/min): CADR (for particles) from AHAM AC-1 m-CADR (for microbes) from AHAM AC-5

Safety:

Ozone (O₃) emissions: UL 867 – low O₃ UL 2998 – (near) zero O₃

Byproduct formation: none (yet)

Dal Porto et al. 2022 AS&T 56:564-572

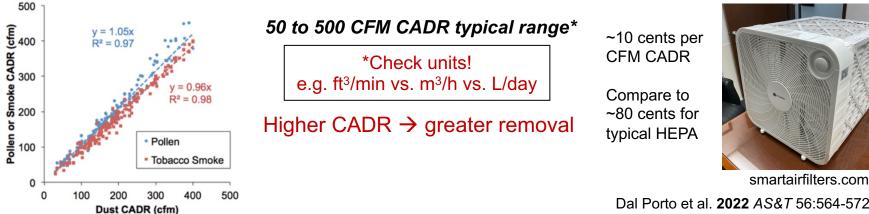
6

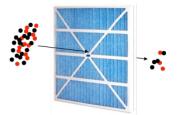
Corsi-Rosenthal DIY Cube

Up to 800 ft³/min!

https://www.epa.gov/indoor-air-quality-iag/air-cleaners-and-air-filters-home

How do you know if a technology is effective and safe?

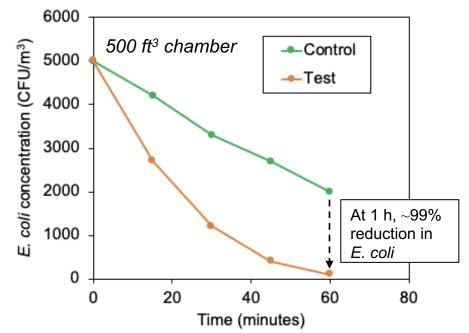

2. Interpret performance data


For <u>standardized</u> tests and metrics, it's fairly straightforward: Single-pass efficiency tests (%):

- MERV, ePM, HEPA, FPR, MPR (filters)
- ASHRAE Standard 185.1 (UV)
 - Higher rating (e.g. MERV) \rightarrow higher removal
 - Need to know **flow rate** through the filter/air cleaner to determine impact •

Clean Air Delivery Rate (CADR) tests (ft³/min):

- CADR (for particles) from AHAM AC-1
- m-CADR (for microbes) from AHAM AC-5



CADR = Flow x Efficiency

2. Interpret performance data

For <u>non-standardized</u> tests and metrics, some interpretation is required

Air Cleaner Technology A reduces viable pathogens by 99% in 60 minutes in a test chamber

Hypothetical microbial inactivation test results

How do you know if a technology is effective and safe?

2. Interpret performance data

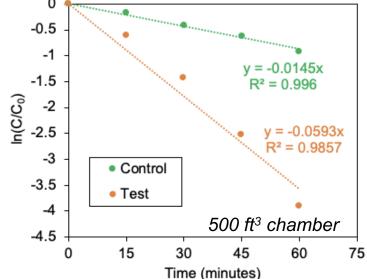
For <u>non-standardized</u> tests and metrics, some interpretation is required

Air Cleaner Technology A reduces viable pathogens by 99% in 60 minutes in a test chamber

Fit data to a 1st-order decay model 0 -0.5 -1 -1.5 -2 -2.5 -3 Control -3.5

Determine CADR from loss rates

$$CADR = V_{test} (L_{ac \ on} - L_{ac \ off})$$
$$CADR = 500 \ ft^3 \times \left(0.0593 - 0.0145 \frac{1}{min}\right)$$
$$CADR = 22.4 \ \frac{ft^3}{min} \approx 22 \ CFM$$


A 250 CFM CADR air cleaner would reduce concentrations more than 99,999999% in 1 hour

ACF-IT **AIR CLEANER EFFICACY INVESTIGATION TOOL**

8

Stephens et al. April 2022 ASHRAE Journal

https://www.pdx.edu/healthy-buildings/ace-it

How do you know if a technology is effective and safe?

2. Interpret performance data

For <u>non-standardized</u> tests and metrics, some interpretation is required

Some questions to ask:

- How do chamber test results translate to standard metrics and real-life conditions?
 - What was the chamber size?
 - What were natural decay rates without operating the air cleaner?
- For additive air cleaning technologies:
 - Were real-world additive constituent levels used?
 - Were chemical or particle byproducts measured?
- For air cleaners with multiple technologies:
 - Which technologies were active?
 - How much did each technology contribute to removal/inactivation?

Acknowledgements and Resources

- Collaborators: Elliott Gall, Delphine Farmer, Mohammad Heidarinejad
 - Stephens et al. "Interpretating Air Cleaner Performance Data," ASHRAE Journal April 2022
 - Stephens and Gall 2021, "Navigating the Landscape of Air Cleaning Technologies for COVID-19," EPA Indoor Air Quality Science Webinar: https://content.govdelivery.com/accounts/USEPAIAQ/bulletins/2eb0653
- Other helpful resources:

Independently Tested. Consumer Trusted.

https://www.ahamdir.com/room-air-cleaners/

Air Cleaners, HVAC Filters, and **Coronavirus (COVID-19)**

https://www.epa.gov/coronavirus/air-cleaners-hvacfilters-and-coronavirus-covid-19

https://www.epa.gov/indoor-air-guality-iag/aircleaners-and-air-filters-home

ASHRAE Position Document on Filtration and Air Cleaning

https://www.ashrae.org/about/position-documents

School IAQ Fact Sheet:

https://www.usqbc.org/resources/school-iaqfact-sheets-entire-series