Setting up partnerships to discover drug targets

Structural Genomics Consortium

SGC Toronto

SGC Oxford

Karolinska Institutet

1. Choose an important problem

Structural Genomics Consortium

SGC Toronto

SGC Oxford

Karolinska Institutet

10 years post-genome: The proteome remains underexplored

Protein kinase citation patterns (the "Harlow-Knapp Effect")

Patents

2. Agree on clear mandate and use top-down decision making

Structural Genomics Consortium

SGC Toronto

SGC Oxford

Karolinska Institutet

Clear mandate

- 1000 3D structures of therapeutically relevant human targets (selected by funders)
- 100 3D structures of parasite drug targets

Simple top-down organization

CIHR, Genome Canada, GSK, Merck, Novartis,, Ontario, Sweden, Wellcome Trust

3. Generate clear rules for IP

Structural Genomics Consortium

SGC Toronto

SGC Oxford

Karolinska Institutet

SGC does not take out IP

- Collaborate quickly with any scientist, lab or institution
- Work closely with multiple private organisations, on same project
- Generate data quickly
- Place data in public domain quickly

Has it worked?

- > 1,000 structures solved
 - SGC now contributes >30% of global output of human structures annually and 15% of total output
 - SGC contributes >40% of global output of human parasite structures annually
 - SGC generates each structure for ~\$150,000 (including Cap Ex)

Making impact in science

Nature Methods. 6:477 (2009); PLoS Biology 7:384 (2009); EMBO J. 28:969 (2009); J. Med. Chem. 52:3108 (2009); Nature Chemical Biology 5:436 (2009); J. Med. Chem. 51:7053 (2009); Cell 136:352 (2009); J. Med. Chem. 52:6369 (2009); Nature Methods 6:477 (2009); J. Med. Chem. 52: 3108 (2009); J. Clin. Invest. 119:1350 (2009); PNAS 106: 1039 (2009); J. Med. Chem. 52(24):7950-3. (2009); PNAS 106:20198 (2009); J. Med. Chem. 53:1810 (2010); Nature Chemical Biology 6:166 (2010), Nature Mol and Struct Biol. 17:596 (2010); Nature Chemical Biology 6:359 (2010); Nature 464:728 (2010), Nature 465:359 (2010)

Keys to PPP success?

- Clear and quantifiable objectives
- Output must have value for all participants (publications for academics, deliverables for industry aligned with their internal interests)
- Leadership: if you can't find the right person, don't start. Don't run project "by committee" or consensus
- If pre-competitive, take a "no IP" position
- Assume the best in collaborators!

Moving the pre-competitive boundary **Open access chemistry to accelerate Target** Discovery

Structural Genomics Consortium

SGC Toronto

UNIVERSIT)X FOR

Karolinska

Nuclear receptors: The H-K Effect, with a twist

Effect

NUCLEAR HORMONE RECEPTOR

The Model for Pre-Competitive Chemistry

Public/Private Partnership	Public Domain	Industry
Chemical Probes	Target Exploration	Drug Discovery
Screening Chemistry Cell-based Assays	No IP No restrictions Publication	(re)Screening Chemistry Lead optimization Pharmacology DMPK Toxicology Chemical development Clinical development
Creative commons		Proprietary

....more than \$50M of resource

Chemical Probe Consortium Released UNC0638 as a Chemical Probe on June 1st

http://www.thesgc.org/chemical_probes/UNC0638/#overview

• Data released prior to publication. Living document that is updated as new data are generated

Collaborators Who Are Using UNC0638

Open access PoC studies

Structural Genomics Consortium

SGC Toronto

SGC Oxford

Karolinska Institutet

Largest attrition in drug discovery for novel targets is at clinical POC

And most drug programs are done in duplicate

Aurora Kinase Inhibitors

- Antimitotic kinase potential treatment for numerous cancer types
 - Will also affect healthy proliferating cells risk of low TI
 - >60 separate organizations have pre-clinical programs with patents
 - 11 compounds in Phase I
 - Further 4 compounds in Phase II
 - Estimated total expenditure >£200M
 - No data available on outcomes of clinical studies, apart from rumours

11 AT9283 F03814735 AS703569 AMG-900 4 W-2449 CYC116 AZD-1152 **MLN-805**4 MLN-823 /X-667 PHA-739358 SU-6668 VX-680 SNS-314 Preclinical Phase I Phase II

>60

Global PPP to deliver clinical PoCs on novel targets (with no IP)

How to organize it?

- A charitable consortium comprising public funders, charities, industry, regulators and patient groups
- All participants have voice in research priorities
- Top-down objective of PPP is to generate clinical PoC for 40 (?) novel targets by funding research anywhere
- All results into public domain, from med chem to PK/PD and tox to clinical data