Robert McDonald

Cities and nature

Direct impact

McDonald et al. 2018, Nature in the Urban Century Assessment

Urban Nature-based Solutions

McDonald et al. 2017, Funding Trees for Health

Report Findings Dashboard

Urban Growth:

This rate of urban growth is the equivalent of building a city with the population of London

every 7 weeks

Humanity will urbanize an area of 1.2 million km², larger than the country of Colombia

Natural Habitat:

1992 - 2000

Urban growth was responsible for 190,000 km² of natural habitat lost

29%

of strictly protected areas¹ were less than 50 km from urban areas

2000 - 2030

Urban growth could threaten

290,000 km²

of natural habitat

40%

of strictly protected areas¹ are projected to be within 50 km of an urban area

Tas defined by IUCN's Protected Area Categories

Carbon Storage:

(os forecost in business-os-usual scenario) Urban growth would destroy natural habitat that stores an estimated

4.35 billion

metric tons of CO2

This is the equivalent of carbon dioxide emissions from

931 million

cars on the road for one year

Globally avoiding the release of carbon from habitat loss due to urban growth has a social value of

182.8 billion USD

assuming the U.S. Environmental Protection Agency's social cost of carbon (USD 42/t CO2 eq)

Coastal Resilience:

Coastal habitats reduce the risk of coastal hazards, such as coastal flooding and erosion during storms.

By 2030, urban area is forecast to more than double,

to 23,000 km²

in low-lying coastal zones where natural habitat plays a critical role in reducing coastal hazards

This increases the number of urban dwellers dependent on natural ecosystems in coastal areas.

Nature in the Urban Century

// EXECUTIVE SUMMARY //

A global assessment of where and how to conserve nature for biodiversity and human wellbeing

McDonald et al. 2018, <u>Nature in the Urban</u> <u>Century Assessment</u>; McDonald et al. 2019 <u>Nat. Sust.</u>

Urban land expansion is a contributing driver of habitat loss for 26-39% of species

Direct impacts: research questions and policy

- A few key research gaps (McDonald et al. 2019):
 - Freshwater and marine biodiversity
 - Global South cities (especially in tropical and arid systems)
- Policy needs:
 - NBSAPs and urban plans must consider protecting urban adjacent biodiversity as key to 30% by '30 (a key GBF target)
 - Integration between UNFCCC and CBD agendas (synergies between planning for climate and biodiversity)
 - Empowering and capacitating subnational governments
- Relevant to SDGs #14 and 15

https://lnkd.in/eNVKbnEc

Indirect impacts

- Indirect urban impacts on biodiversity appear to affect a greater area than direct impacts
- Food consumption appears to be the greatest indirect impact of cities.
 - Agricultural land needed to support those in cities is 36x larger than their urban area.
- However, indirect effects are less studied than direct effects.

McDonald et al. 2019 Nat. Sust.

Indirect impacts: research questions and policy

- A few key research gaps (McDonald et al. 2019):
 - Modeling and metrics that connects urban decisions to specific biodiversity impacts (teleconnections and LCA)
- Policy needs:
 - Need for urban (and corporate) commitments to net biodiversity loss that includes indirect effects
 - Emerging frameworks: Science-based Targets for Nature (SBTN), IUCN's Urban Nature Index, Singapore Index.
 - Need for strong urban-relevant commitments in CBD and UNFCCC process:
 - Urban areas indirect effects essential for GBF targets:
 - #7 (Pollution reduced)
 - #16 (Responsible Choices)
- Relevant to SDGs #6, 11, 12, 13, 14, and 15.

Urban nature-based solutions

- Urban green spaces often lack urban avoider species, but nevertheless can harbor significant biodiversity
- Urban green spaces however can be an NbS for human wellbeing and climate adaptation.
- Two challenges to use of urban NbS:
 - Nature inequality
 - Potential tradeoffs between density and urban nature
 - Can be overcome by good urban design

A recent study shows that poor neighborhoods have less tree cover than rich neighborhoods in 92% of American communities.

McDonald et al. (in review), People and Nature

Urban NbS: research questions and policy

- A few key research gaps (<u>McDonald et al. 2015</u>):
 - How can cities be both dense (low-carbon) and green?
 - How much can NbS meet societal needs, relative to other potential solutions?
- Policy needs:
 - Need for financing and incentives that overcome the "wrong" pocket problem"
 - Need for best-practice governance systems for planning, creating, and maintaining NbS
- Relevant to SDGs #3, 6, 11, and 13.
- Cities are essential for GBF targets #11, 12, 21.

https://Inkd.in/eNVKbnEc

Thank You

