

Wildland Firefighter Smoke Exposure

Joe Domitrovich, Ph.D. Joe Sol, M.S. Molly West, MPH Skylar Brown, RN

Forest Service

National Technology & Development Program

August 2020

Job of Wildland Firefighter

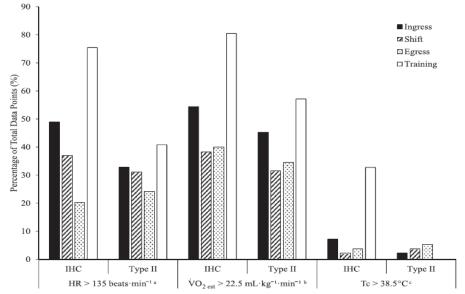
Table 1	Wildland firefighter job tasks categorised into four groups based on activity level and percentage of total person-task observations in the
data set	in the Wildland Firefighter Heat Related Illness study. Western United States. 2013–2016

Sedentary activity	%	Light physical activity	%	Moderate physical activity	%	High physical activity	%
ICP Stationary	1.7	Handline Direct Pump	0.1	Мор Up	5.1	Handline Direct Scratch	0.7
ICP Other	0.2	Handline Indirect Pump	0.02	Cold Trailing	0.6	Handline Direct Sawyer	0.5
Briefing	6.7	Handline Indirect Dozer Boss	0.02	Improving Direct Line	0.2	Handline Direct Swamper	0.6
Driving	6.9	Holding Direct Line	1.3	Improving Indirect Line	1.1	Handline Direct Engine	0.1
Lunch Break	3.6	Holding Indirect Line	0.2	Felling Sawyer	0.6	Handline Direct Squad Leader	0.1
Rest Break	3.3	Holding Firefighter	0.7	Felling Swamper	0.6	Handline Direct Firefighter	0.2
Operational Break	19.5	Holding Squad Leader	0.2	Working with Aviation	0.1	Handline Indirect Scratch	0.4
Staging	0.9	Holding Engine	0.1	Scouting Hazard Trees	0.7	Handline Indirect Sawyer	0.6
Other	0.5	Suppression Holder	0.8	Grid the Black	1.5	Handline Indirect Swamper	1.2
Total	43.2	Engine Pump Operator	0.2	Grid the Green	0.6	Handline Indirect Squad Leader	0.3
		Holding Pump	0.1	Tool Up/Tool Down	8	Handline Indirect Firefighter	0.2
		RX Holder	0.2	Total	19	Line Preparation	0.5
		Refurb Tools	3.3			Initial Attack	0.1
		Structure Protection	1.1			RX Lighter	0.2
		Compound Work	1.4			Suppression Lighter	0.8
		Total	9.4			Physical Training	1.3
						Project Saw	0.6
						Project Stacking	0.7
						Hiking	19.2
						Medical	0.1
						Total	28.4

See glossary of terms in online supplementary appendix for definitions of job tasks.

ORIGINAL RESEARCH

Risk for heat-related illness among wildland firefighters: job tasks and core body temperature change


Molly R West o, ^{1,2} Sadie Costello,³ Joseph A Sol,² Joseph W Domitrovich²

Forest Service

Job of Wildland Firefighter

a -135 beats min-1 represents HR value associated with the ventilatory threshold of WLFFs44.

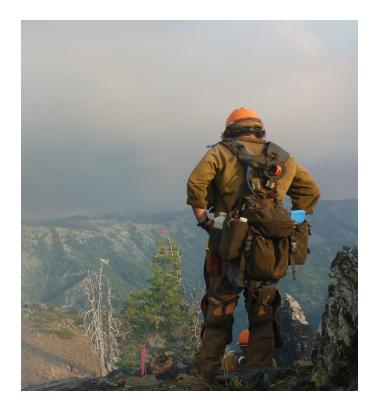
^b - 22.5 mL·kg⁻¹·min⁻¹ represents the metabolic demand of the current WLFF Work Capacity Test⁷⁻⁹.

° - 38.5 °C represents the core temperature representative of the onset of risk for heat exhaustion 41.

WILDERNESS & ENVIRONMENTAL MEDICINE (2018) 8, 888-888

ORIGINAL RESEARCH

Metabolic Demand of Hiking in Wildland Firefighting


Joseph A. Sol, MS; Brent C. Ruby, PhD; Steven E. Gaskill, PhD; Charles L. Dumke, PhD; Joseph W. Domitrovich, PhD

Forest Service

Weight

BREAKDOWN OF PACK WEIGHT PERCENT BY CATEGORY

 Water
 Empty Pack
 Fire Shelter
 Other

 OVERALL
 29
 14
 12
 46

Forest Service

Exposure Profile

Table 2. Summar	y metrics for occupational	exposures among U.S	S. wildland firefighters	and fire managers (2009-2012).

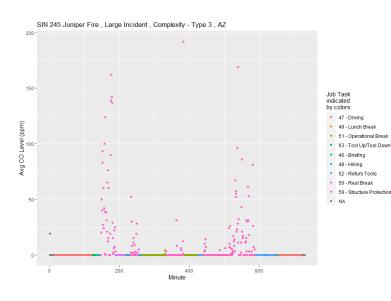
		1	0					
Distribution Metrics	CO 1-Min	CO 5-Min	CO 8-hr	CO Fireline	CO Shift	PM4 Shift	Quartz Shift	Quartz Shift
	Avg. (ppm)	Avg. (ppm)	Avg. (ppm)	Avg. (ppm)	Avg. (ppm)	Avg. (mg/m ³)	Avg. (mg/m ³)	PEL (%)
OEL Criterion	1200	200	35	25	16	0.7 ^C	0.029 ^F	100
Initial Attack (n)	60 ^A	60 ^A	50	50	50	18	18	18
UTL (95%/95% UCL)	317	224	41	60	26	1.1	0.321	1370 ^D
95th percentile	212 ^B	141 ^B	20 ⁸	30 ⁸	13 ^B	0.54 ^B	0.116 ^B	430 ^B
95% UCL of mean	61 ^B	34 ^B	3.1 ⁸	4.3 ⁸	2.1 ^B	0.28 ^B	0.043 ^B	144 ^B
Arithmetic Mean	51 ^B	28 ^B	2.4 ⁸	3.5 ⁸	1.6 ^B	0.21 ^B	0.028 ^B	90 ^B
Geometric Mean	29	14	0.8	1.4	0.58	0.13	0.012	31
GSD (unitless)	3.4	4.0	7.0	6.4	6.6	2.4	4.0	4.9
Nondetects (%)	1.7	1.7	2.0	2.0	2.0	61	44	44
Exposures > OEL (%)	0.0 ⁸	0.0 ^B	0.0 ^B	0.0 ^B	0.0 ^B	5.6 ^B	28 ⁸	28 ⁸
95% UCL of > OEL (%)	4.9 ⁸	4.9 ^B	5.8 ^B	5.8 ^B	5.8 ^B	24 ^B	50 ⁸	50 ⁸
Project Fire Crews (n) UTL (95%,95% UCL) 95th percentile 95% UCL of mean Arithmetic Mean Geometric Mean GSD (unitless) Nondetects (%) Exposures > OEL (%) 95% UCL of > OEL (%)	417 572 489 ⁸ 119 ⁸ 61 3.6 1.7 0.5 ⁸ 1.5 ⁸	417 368 308 ⁸ 60 ⁸ 54 ⁸ 29 4.2 1.7 1.7 ⁸ 3.1 ⁸	417 68 53 ⁸ 6.1 ⁸ 5.5 ⁸ 2.0 7.3 1.7 0.5 ⁸ 1.5 ⁸	417 62 48 ⁸ 5.6 ⁸ 4.9 ⁸ 1.7 7.7 1.9 ^E 1.0 ⁸ 2.2 ⁸	417 44 34 ⁸ 3.5 ⁸ 1.3 7.3 1.7 1.0 ⁸ 2.2 ⁸	80 1.9 1.4 ⁸ 0.57 ⁸ 0.49 ⁸ 0.35 2.4 10 22 ⁸ 30 ⁸	80 0.191 0.034 ⁸ 0.027 ⁸ 0.010 4.6 38 28 ⁸ 37 ⁸	80 649 403 ^B 115 ^B 90 ^B 33 4.6 38 28 ^B 37 ^B

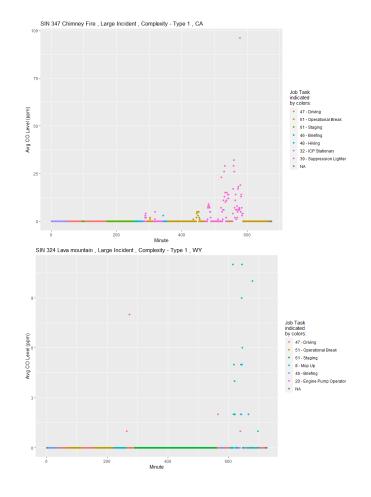
JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE https://doi.org/10.1080/15459624.2018.1540873

Check for updates

Factors affecting smoke and crystalline silica exposure among wildland firefighters

Timothy E. Reinhardt^a and George Broyles^b


^aWood Environment & Infrastructure Solutions, Inc., Seattle, Washington, USA; ^bUSDA Forest Service, Technology & Development, Boise, Idaho, USA



Forest Service

Exposure Profile

FOREST SERVICE

Forest Service

Health Risk

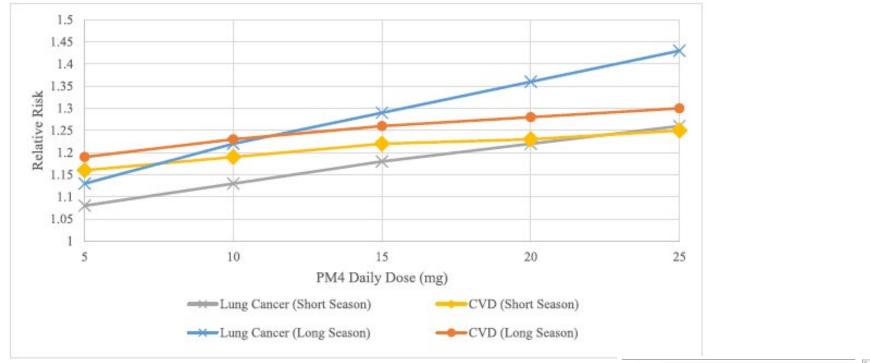


Fig. 1. Relative risk of lung cancer and cardiovascular disease across career length.

Check for updates

Wildland firefighter smoke exposure and risk of lung cancer and cardiovascular disease mortality

Kathleen M. Navarro[®], Michael T. Kleinman^b, Chris E. Mackay^c, Timothy E. Reinhardt^d, John R. Balmes^e, George A. Broyles^f, Roger D. Ottmar[®], Luke P. Naher^b, Joseph W. Domitrovich^{1,}

⁴USDA Forest Service, Pacific Southwest Region, Fire and Aviation Management, Clovis, CA, USA ⁶Center for Occumational and Environmental Health. University of California, Irvine, CA, USA rtox, Southle, WA, USA Internos, Santha, WA, USA MARC Flower Weber, Hartownneet & Infrastructum, Inc., Saerik, WA, USA Doskinn of Derivoranemal Hashi Stochos, School of Pable, Hashi, Dinhentoy of California, ISAD Forest Series, Anaional Technologue and Development Program. Base, pp. USA USAN Harras Gerico, Patific Northware Research Statum, Santha WA, USA Department of Environmental Hashi Statum, Callage of Pable Health, Districtly of Generation (2016) Forest Series, National Technology and Development Program, Missouka, MT, USA Barkeley, Barkdey, CA, USA

Forest Service

Respiratory Protection

1864
NFPA 1984
Standard on
Respirators
for Wildland
Fire Fighting
Operations
2016 Edition
2010 Edition
• • • • • • • • • • • • • • • • • • •
and a state of the state of the state

Forest Service

