

Clinical Trial Simulation in the Geriatric Population

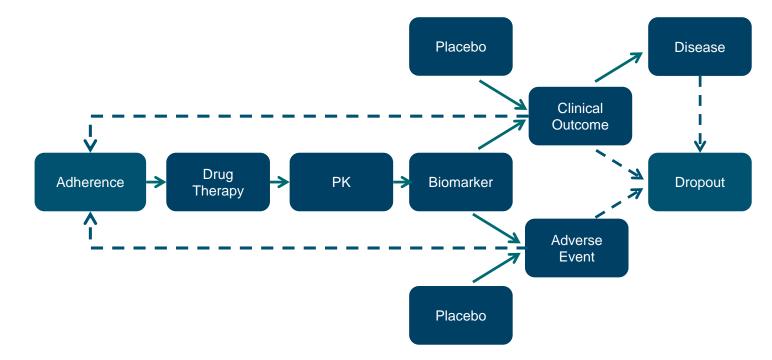
NASEM Session 2: Drug R&D for Older Adults

N. Seth Berry, PharmD Senior Director, Clinical PK-PD Modeling & Simulation

© 2020. All rights reserved. IQVIA® is a registered trademark of IQVIA Inc. in the United States, the European Union, and various other countries.

Table of Contents

- + Optimizing clinical study design in silico
- + Building the virtual elderly patient with disease progression models
- + Age related implications to the drug model
- + Adherence patterns in the elderly
- + Dose individualization using precision dosing applications

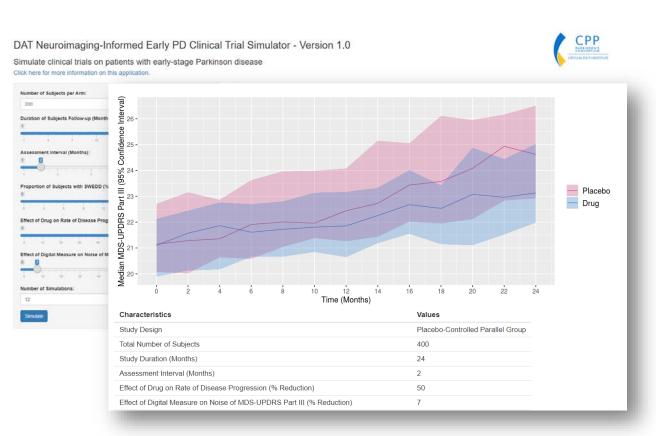


Clinical Trial Simulation

Overview of Modules

- Protocol Design & Inclusion/Exclusion Criteria
- Simulated Patients
 - Covariate Distribution / Correlation
 - › Disease Progression Model
- Drug Model
 - > Dose \rightarrow Pharmacokinetic \rightarrow Pharmacodynamic \rightarrow Response
- Protocol Deviations
 - > Adherence / Compliance
 - > Drop-out
- Statistical Analysis Plan / Results
- Simulation Scenarios

Goal of Optimizing the Clinical Trial Design



Generating Elderly Patients for Clinical Trial Simulation

Virtual Subjects vs. Re-Sampling

- Re-sampling from an existing general database
 - **NHANES** (National Health and Nutrition Examination Survey)
 - NHATS (National Health and Aging Trends Study)
 - NSHAP (National Social Life, Health, and Aging Project)
- Therapeutic area specific databases / CTS tools
 - Specific NIH Institutes
 - NINDS (National Institute of Neurological Disorders and Stroke)
 - Critical Path Institute
 - > CPP (Critical Path for Parkinson's)
 - > CPAD (Critical Path for Alzheimer's Disease)
 - Pharma placebo data
 - Associations (eg Alzheimer's)

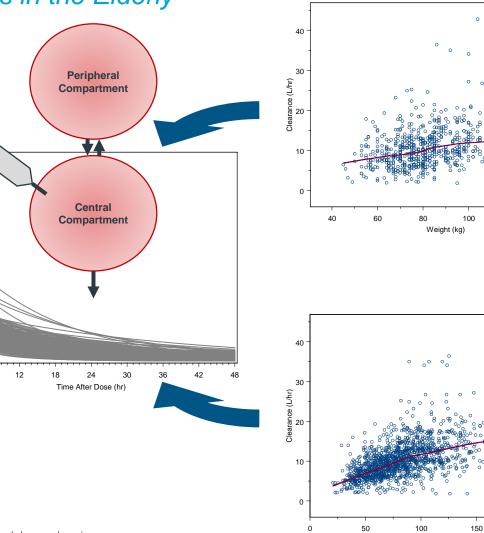
The Drug Model

Population PK–PD Models in the Elderly

600

500

400 (T/bm)


006 gt

200 200

100

6

- Basic Structural Model
 - Route of Administration (Oral, IV)
 - Analyte
 - Parent
 - Metabolite
 - > PK-PD
 - PK Parameters
 - Absorption
 - Distribution
 - Metabolism
 - Elimination
- Error Model
 - Variability Parameters
 - Between Subject Error
 - > Within Subject Error
- Covariate Relationships

- Elimination • Pharmacodynamic Implications
 - €IQVIA

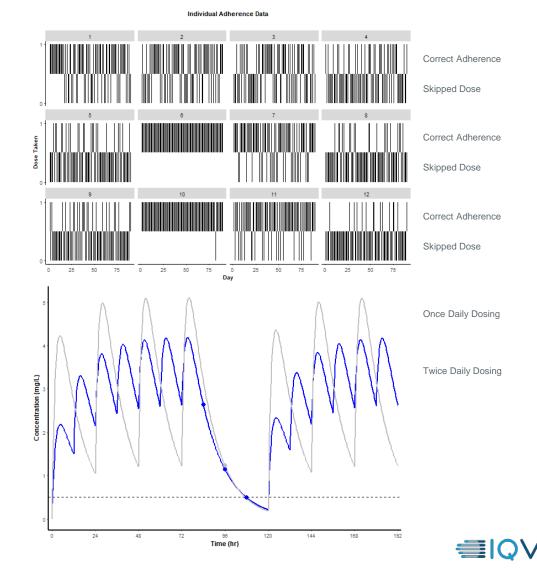
- Age-Related Changes
 - Gastrointestinal System -
 - **Body Composition**
 - Cardiac Structure & Function
 - Liver

120

200

Creatinine Clearance (mL/min

140


- Renal System
- Pharmacokinetic Implications
 - Absorption
 - Distribution
 - Metabolism

Adherence Patterns in the Elderly

Simulating Adherence – Markov Mixed Effects Regression Model

- John Urquhart's Rule of 6's
- In the Elderly:
 - Fairly low adherence, often due to difficulties with poly pharmacy issues.
 - Closely correlated with education level, significance of health-related problems, and dosing frequency
- Significance of Adherence
 - Adherence holidays can drop concentration levels below a threshold for therapeutic efficacy
 - Non-compliance with administration (eg, double dosing) can also raise concentration levels above toxicity thresholds, leading to potential adverse events
 - More frequent dosing provides a better level of forgiveness for missed doses.

Reference: Girard, et. al. "A Markov Mixed Effect Regression Model for Drug Compliance", Statistics in Medicine.. Vol 17, pgs 2313-2333. (1998) Comté, et. al. "Estimation of the comparative therapeutic superiority of QD and BID dosing regimens, based upon integrated analysis of dosing history and pharmacokinetics", Journal of Pharmacokinetics and Pharmacodynamics. Vol 34, pgs 549-558. (2007)

Simulation Scenarios

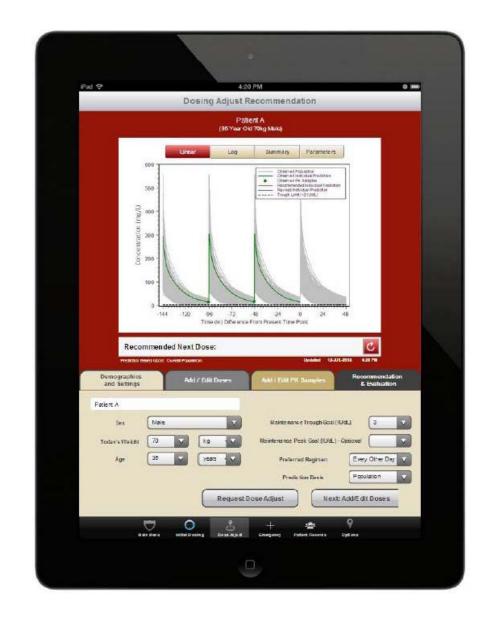
Case Study: Evaluation of Virtual Clinical Trial Results

Challenge	Solution	Results
 Background Treatment: 	 Monte Carlo Simulations using Trial Simulator[™] 2.2.2 	 No weight-based PTZ dose adjustments are required in obese population
 Piperacillin / Tazobactam (PTZ) 	 Using a previously developed PTZ Population PK model, with covariates 	 Validates the use of extended-infusion regimens in both the normal and obese individuals
Problem:	Weight Group	ZNormal ZObese
 Obtain Probability of target attainment (PTA) > Minimum Inhibitory Concentration (MIC) for more than 50% of the dosing interval 		100- 75- 50- 25-
 Identify if dosing needs to be adjusted in the obese population (including adjustments for CrCL) Compare traditional vs extended – infusion dosing regimens 	(%)	0 100 75 50 25 0
	్ర ప్రస్తుత్ త ప్రస్తుత్త ప్రస్తుత్త ప్రస్తుత్త ప్రస్తు ప్రస్తుత్త ప్రస్తుత్త ప్రస్తుత్త ప్రస్తుత్త ప్రస్తుత్త ప్రస్తుత్త ప్రస్తుత్త ప్రస్తుత్త ప్రస్తుత్త ప్రస్తుత్త ప	100 75- 50- 25- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	china	100 75 50 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CrCl (mL/min)

CrCl (mL/min)

CrCl (mL/min)


Reference: TP Dumitrescu, et. al. "Using Monte Carlo Simulations to Assess Dosing Regimen Adjustments of Piperacillin/Tazobactam in Obese Patients with Varying Renal Functions." Journal of Pharmacokinetics and Pharmacodynamics. May 2013.

Precision Dosing Applications

Use in the Elderly Population

- Ability to individualize dosing to optimize a patient's exposure and corresponding efficacy / safety response, especially for molecules with narrow therapeutic indices
- Bayesian update of model (ie, Adaptive Precision Dosing)
- Integration in Randomized Concentration- or Biomarker-Controlled Clinical Trials
 - > Reduce the down bias of dose-response trials due to confounding overlap for molecules with high PK variability.
 - > Reduce sample size
- Real-World health uses
 - > Connected to EMR and Health Care Provider
 - > Tie in with Adherence Devices, Wearables, Sensors
 - > Machine learning in poly-pharmacy (DDDDI)

Thank You!