

An Overview of the Lunar Water ISRU Measurement Study (LWIMS)

Decadal Survey on Planetary Science and Astrobiology: Panel on Mercury and the Moon: 21st Meeting August 6, 2021

Julie Kleinhenz¹ and Amy McAdam²

Anthony Colaprete³, David Beaty⁴, Barbara Cohen², Pamela Clark⁴, John Gruener⁵, Jason Schuler⁶, Kelsey Young²

¹NASA Glenn Research Center, ²NASA Goddard Space Flight Center, ³NASA Ames Research Center, ⁴NASA Jet Propulsion Laboratory / California Institute of Technology ⁵NASA Johnson Space Center, ⁶NASA Kennedy Space Center

This presentation is a subset of information from the full LWIMS report

- https://ntrs.nasa.gov/search?q=20205008626
 - Kleinhenz, J., A. McAdam, A. Colaprete, D. Beaty, B. Cohen, P. Clark, J. Gruener, J. Schuler, and K. Young, 2020, Lunar Water ISRU Measurement Study (LWIMS): Establishing a Measurement Plan for Identification and Characterization of a Water Reserve. NASA TM-2025008626

Background

Water identified in the permanently shadowed regions (PSRs) at the lunar poles can significantly enhance and enable lunar sustainability. But ISRU architectures (mining, conops, hardware design) requires knowledge of:

- Water content as a function of depth and area distribution (heterogeneity)
- Water form and energy to release from bound state
- The physical and mineral characteristics of the lunar regolith at mineable depths
- Topography and rock size distribution at potential mining infrastructure locations
- PSR environmental conditions

Problem Statements

- 1. Besides a single surface data point (LCROSS impact) there is significant uncertainty in the type, amount, physical parameters, and lateral/vertical distribution of water and volatiles in lunar PSRs
- 2. Before lunar ISRU water/volatile mining hardware and operations can even reach a preliminary design review, more 'ground truth' information on water/volatiles in PSRs is required.
- 3. While current and future lunar science instruments and missions can provide critical information, these science-focused efforts may not be sufficient for selecting mining locations, defining requirements for mining hardware designs, and planning mining operations

Water has been identified as a **RESOURCE**, but its potential for ISRU requires identifying and locating a water **RESERVE**.

EXPL

MOON to MARS

Lunar Polar Water: Current knowledge state

Shallow bulk water is the target for ISRU.

- Potential lunar water sources include: surface frost, shallow bulk water, deep bulk water, and pyroclastic deposits
- There are 4 data sets for shallow bulk water (LCROSS, Chandrayaan-1, LRO, LP; see chart)
 - There are more data sets for surface frost detection (e.g., LAMP, LOLA and M3) than other data sets. While surface frost may be a geologic indicator of deeper water, there is currently no strong correlation between the two types of data sets (surface vs. buried reservoirs)

Water Equivalent Hydrogen (neutron spectroscopy) cannot give accurate concentration or depth distribution

- NS flux indicates there is hydrogen somewhere between the surface down to about 80 to 100 cm
- Conversion to WEH assumes uniform distribution laterally and with depth, and that all H is bound in water
- Is a function of assumptions regarding desiccated layer: concentration may be higher, but at depth

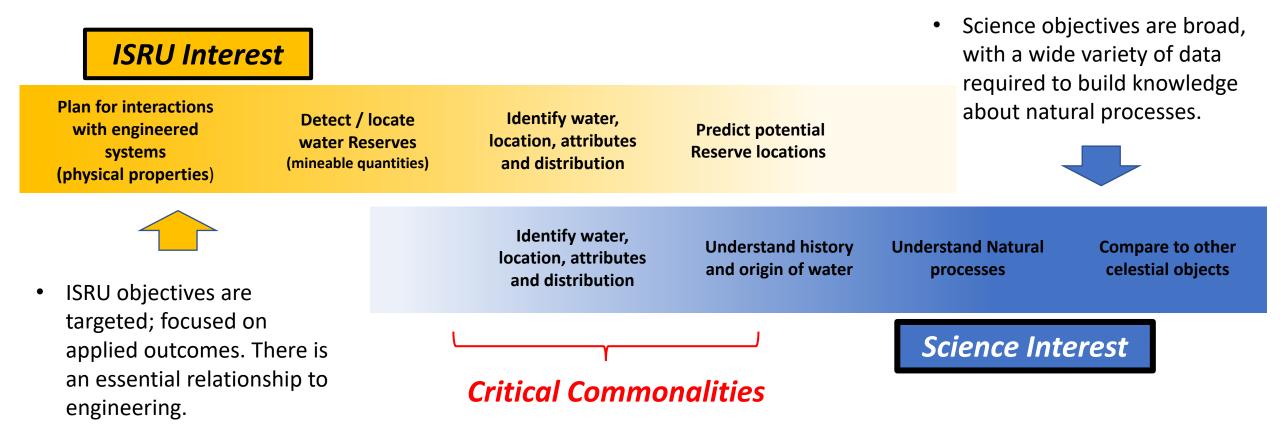
While regional distribution can be mapped from orbit significant local heterogeneity is expected

 Using Neutron Spectrometer: ~50 to 150 m (expected heterogeneity scale based on cratering statistics)

Radar data (CPR*) may suggest potential large volumes of water, but surface roughness can produce a similar signal.

Resolutions from current data sets are insufficient for Reserve definition.

- Reserve definition requires high resolution observation of a particular resource
- Current instruments and vantage points were designed with science objectives in mind.


LCROSS3 to 5 mSingle 50 m sample to 5 m deep5.5 wt%, with other speciesSingle locationNS if distributed at to 40% and/or bur under 10 to 30 c desiccated layerChandrayaan -1 and LRO: RADAR CPR*~1 to 2 m150 m (baseline) up to 15 m (zoom- azimuth)Wavelength scale ice blocksSome PSRsSource of high to volume estimate Could also be surf	Source	Sensing Depth	Resolution	Concentration	Extent	Comments
Chandrayaan150 m (baseline)Wavelength-1 and LRO:~1 to 2 mup toscale iceBADAR CPR*15 m (zoom- azimuth)blocksSome	LCROSS	3 to 5 m	•	•	U	Consistent with the LP NS if distributed at 30% to 40% and/or buried under 10 to 30 cm desiccated layer
Touginess	-1 and LRO:	~1 to 2 m	up to	scale ice		Source of high total volume estimates Could also be surface roughness
LP and LRO: Neutronalt. LRO: ~75 km at 50 km0.2 to several wt%Poleward of 80°concentration dependence on assumption of several	Neutron	0.8 to 1 m	alt. LRO: ~75 km at 50 km alt. (STN) ~10 km at 50 km alt.			Low resolution, deriving concentration depends on assumption of small scale and vertical distribution

*circular polarization ratio

EXPL

ISRU and Science: Commonalities and Differences EXPL®RE

While Science and ISRU have common measurement needs that will support one another; distinct data sets are required for each.

Reserve Definition

Terrestrial Reserves

- Driven by Economic factors
 - Confidence in reserve is a cost trade:
 - Will a mine at the reserve site turn a profit?
 - Will a bank front the loan to start the mine?
- Exploration is known:
 - Geologic context is established
 - > Models exist to map/define reserve
 - > Measurements (model inputs) are defined
 - Measurement techniques (instruments, methods) are established and available
 - Exploration sites are (largely) accessible
 - Exploration is an initial investment; consider cost benefit: confidence in profitability vs. up front cost
 - "Proven" Reserves vs."Probable" reserves

	Exploration Results	
	MINERAL RESOURCES	MINERAL RESERVES
Increasing level of	Inferred	
geological nowledge and confidence	Indicated	Probable
	Measured 4	Proved

Extraterrestrial reference Reserves

- Driven by Mission Success factors
 - Confidence in reserve impacts potential for mission success
 - Is engineering feasible and can the mission productivity goals be met?
 - Is production in critical path? (survival/productivity of crew, mission success)
 - Criteria for ISRU Reserve is listed on Slide 39
- Exploration is not established
 - Geologic context is not well understood
 - Models to predict or map/define reserve are in development
 - Measurement techniques are more restricted, potentially distinct from terrestrial options
 - Exploration sites are extremely difficult to access
- Exploration cost and timelines are much greater than terrestrial case.
 - Required confidence in reserve is therefore program dependent
 - Long term activity at extraterrestrial location will cause the terrestrial and extraterrestrial definitions to converge

Threshold Criteria for a Reserve

ISRU System		Human Landing Systems		
ISRU Requirement	Criteria	Lander Requirement	Initial	Sustained
Water Concentration	≥2 wt% to a 1 wt% detection	Daylight Operations	continuous light	50 hours darkness (threshold) 191 hours (goal)
Water Depth distribution	limit 5 to 100 cm,	Surface Access	84° S to 90° S	global
	≤10 cm increments 5 to 50 cm	Habitation Capability	two crew for 8 earth days	four crew lunar sortie with pre- emplaced surface infrastructure
Overburden depth	≤10 cm increments	EVA Excursion Duration	lasting a minimum of 4 hours	lasting a minimum of 8 hours
Lateral distribution	al distribution 500 m radius		vertical orientation of 0 to 8° (threshold) and 0 to 5° (goal) from loca	
Target yield	15 tons water per lander	Landing Site Vertical Orientatior	n vertical for surface operations.	
 Criteria according to current ISRU system models which use current technologies and architecture concepts (Kleinhenz and Paz, AIAA ASCEND 2020) 		Landing Accuracy	landing within 100 m (3-sigma) of target landing site	
			operating on the lunar surface for a minimum of 6.5 Earth	

Surface Operations

Lunar Orbit

EVA Excursions per Sortie

Scientific Payload Return to

- Criteria are highly dependent on:
 - Amount of consumables needed -
 - Timeline allotted for ISRU production -
 - Architecture interface to HLS (location of produced consumables, power)
 - Assumptions about mobility options and capabilities including autonomy and operational life —
- Consideration to Oxygen from Regolith (O2R) as the alternative to water from ice
 - When possible, identify breakpoints where O2R is clearly advantageous over water from ice
- Additional knowledge to design ISRU systems and architectures (next page)

For infusion of ISRU into Human campaign, the HLS site requirement must be considered

returning scientific payload of at least 35 kg and 0.07 m³

volume (threshold) and 100 kg and 0.16 m³ volume (goal)

at least two (threshold) and five (goal) surface EVA excursions per

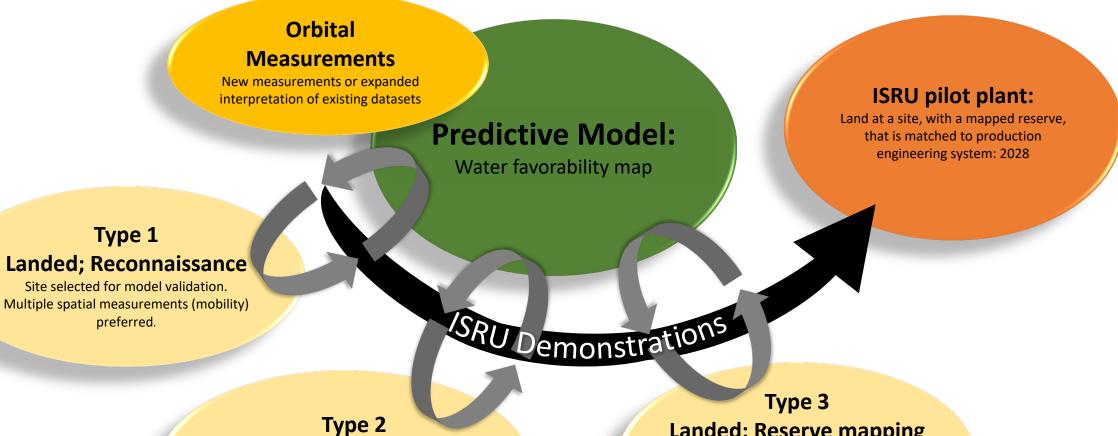
- ISRU reserves must have adequate proximity to HLS sites
- Information per HLS BAA Appendix H requirements

days

sortie.

ISRU knowledge gaps

- The following information is required to design ISRU systems and architectures
- These parameters would not eliminate a site from consideration, but are key design parameters

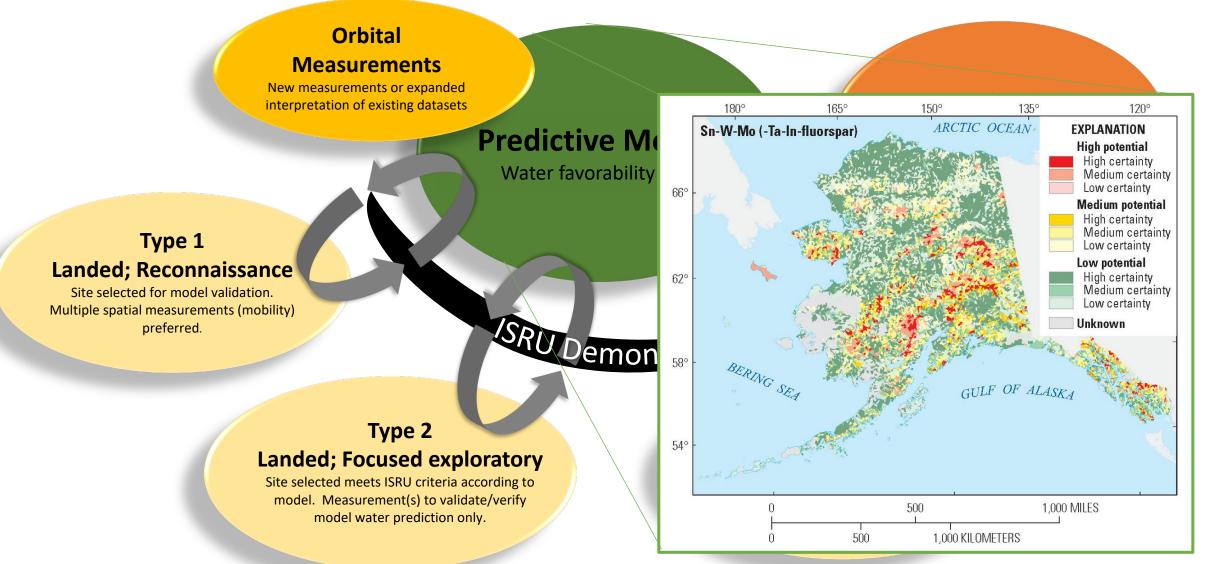

Regolith reactivity		Geotechnical	properties
equired Input	Required Range (if applicable)		Dequined
ater Release mperature profile lease Energy and Quantity)	≤~200°C	Required Input	Required applie
les released at erature	≤~200°C	Cohesive Strength (c)	0 to 1
g, HFI; CO ₂ , CO		Internal Friction Angle (Ø)	10° to

Geotechnical properties				
Required Input	Required Range (if applicable)			
Cohesive Strength (c)	0 to 100 kPa			
Internal Friction Angle (Ø)	10° to 50°			
Particle size distribution	1 to 1000 µm			
Soil bulk density	0.5 to 2.5 g/cm ³			
Compressive Strength	1 to 100 MPa			

Terrain features including rock abundance

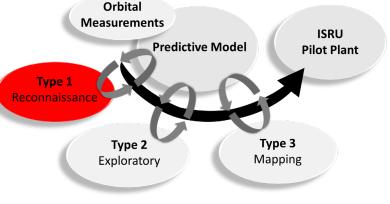
Measurement Plan Structure

Landed; Focused exploratory


Site selected meets ISRU criteria according to model. Measurement(s) to validate/verify model water prediction only.

Landed; Reserve mapping

Detailed mapping of selected ISRU Reserve site. Definition of the reserve and surface characteristics. Multiple spatial measurements (mobility) required.

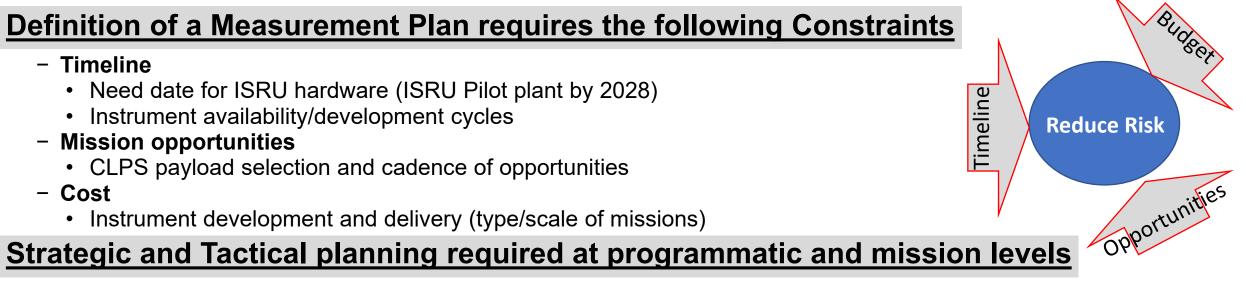

Measurement Plan Structure

Type 1: Surface Reconnaissance Measurement Goals

- Direct, ground-based measurements at surface sites selected to develop model and put orbital measurements in context
 - e.g., Direct water measurement to translate/verify orbital WEH identification as water
- Selected site does not necessarily meet ISRU Reserve criteria. Instead, site selection based on:
 - Opportunities to obtain broader range of data to develop predictive model
 - Accessibility: Earliest landing site opportunities
- Measurement priorities primarily target model development needs, not reserve definition.

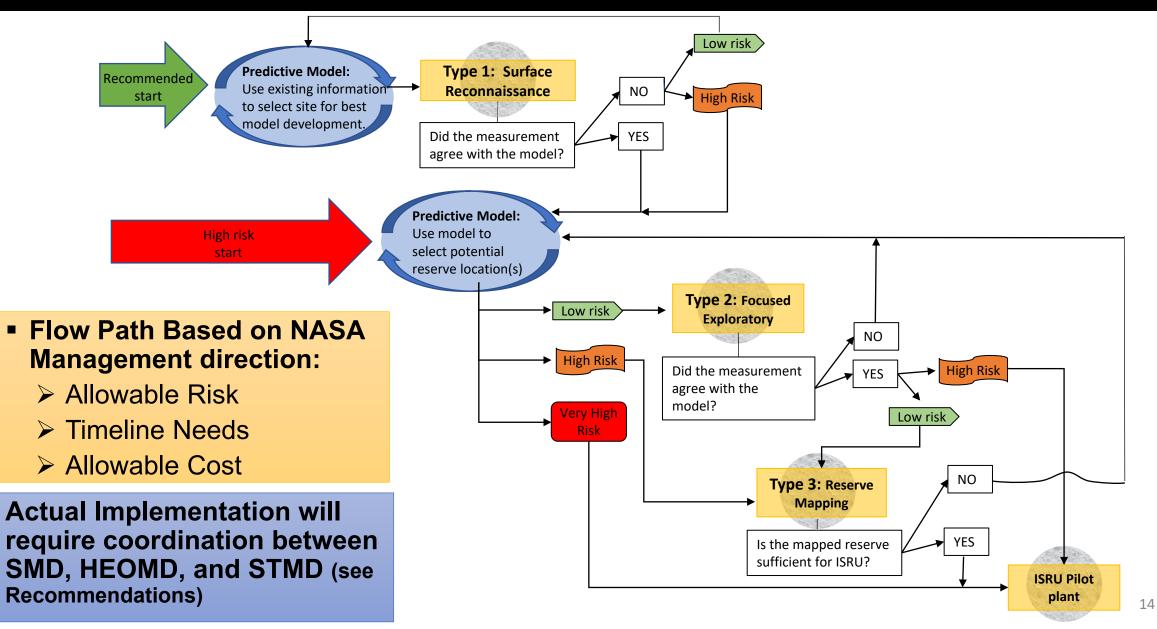
Type 1: Surface Reconnaissance Measurement Definition

Measurement (Relative priority from top to bottom)		Potential approach(es) /platform(s)	Target measurement parameters	<i>Example</i> method(s)/ instrument(s)
water horizontal not p and vertical data distribution, to or abundance bette suppo	data gained can be matched to orbital measurements for better interpretation and	Active subsurface sampling from stationary or mobile platforms, with complementary sample analysis instruments.	Water abundance with vertical resolution <20 cm depth intervals to 1 m, 1% detection limit	Drill, scoop, or volatile drive off mechanism with attached analysis capability via Mass Spectrometer, Tunable Laser Spectrometer (TLS)
	support of predictive modeling.	In situ survey from network of small platforms equipped with cubesat- scale payloads, small mobile platforms, network of impactors, hoppers	Water abundance with vertical resolution <20 cm depth intervals to 1 m, horizontal resolution 50 m, to 1% detection limit	Miniaturized payloads (<10 kg) neutron spectrometer, ground penetrating radar, IR imager on mini-rovers
Potential ISRU contaminants (e. $_{1}$ S compounds, HF, NH ₃ , Hg, organic compounds) in sit or in regolith	 external or internal processes) could impact ISRU 	Same as shallow water, active subsurface sampling with complementary payload or in situ survey	Element/compound identification (>1 to 100 Da or 150 Da baseline) and abundances (best effort)	mass spec, APXS/XRF (elements), LIBS (elements) for in situ analysis; mass spec with pyrolysis front end for analysis of sample; energetic neutral or charged particle analyzer


Proposed Polar Resource Measurement Plan

The <u>GOAL</u> of a measurement plan is to <u>REDUCE RISK</u> for an ISRU pilot plant Increase confidence in water reserve; reduce uncertainties Decrease hardware operational risks: designed for conditions

Polar Resource Measurement Plan includes a framework with the following:


- A detailed list of measurements with target detection ranges and accuracies
- A list of potential instruments that could achieve measurements goals, depending on mission constraints
- An iterative approach to obtain and evaluate measurement data to achieve target goals, based on risk postures

- Coordinated selection of instruments, sites, operational concepts, etc.
- Consideration on impact to plan due to mission failure or null results

Decisional Flow diagram

Findings

- Current data sets are insufficient to define a reserve
 - Identifying shallow bulk water can only be accomplished (currently) with NS (LRO,LP) and Radar (Chandrayaan-1 and LRO), but interpretation of data, particularly regarding distribution is inadequate
 - Coverage of this data at the Lunar poles and in PSRs is limited
 - LCROSS, while extremely valuable, was only a one point measurement
- Schedule is a driver (target: 2028 ISRU pilot plant), which limits options for instruments and implementation options.
 - May prefer reuse/re-flight of instruments hardware to reduce operational risk and improve data interpretation
 - Measurement plan (type and cadence) of missions must be reflective of Risk posture and results returned
 - Development of ISRU production systems have to occur in parallel with reserve identification to meet schedule; delaying measurements will result in less input to system design and result in higher hardware risk
- Existing measurement techniques can achieve data needed, but must be adapted for lunar application
 - Hardware (mobility, sampling, some instruments) must be adapted for operation in PSRs
 - Water quantification using heated sampling techniques, will likely provide highest accuracy, but are least developed for these applications

Recommendations

- To meet aggressive schedule, a coordinated, focused effort must be implemented
 - This impacts all Mission Directorate interests (STMD: ISRU hardware development, HEO: implementation of ISRU, SMD: volatiles measurements and overlap of science objectives)
- Additional regional data sets (orbital) including high spatial res Hydrogen maps, thermal, surface water detection would be of high value to help reduce overall risk/uncertainty
 - Missions (LunaH-map, Lunar Flashlight and the Lunar Trailblazer concept) should all go forward
- Support ISRU relevant instruments in PRISM and LuSTR programs (or similar) for advancement of ISRU technologies.
- Recommend 'Best' Path based on Low to Moderate Risk is:
 - Proceed with currently planned cubesat and smallsat missions to advance orbital/regional data sets
 - Support development of predicative model capability asap
 - Perform VIPER as planned for first Type 1 mission
 - Perform a minimum of 3 landed exploration missions: a Type 1, Type 2, and Type 3

Future Work Recommendations

- Establish a multi-discipline standing group and follow-on activity(s) to support coordinated measurement strategy
 - Coordinate activities across NASA mission directorates with clear handoffs
 - Consensus on extraterrestrial "reserve' definition, evolving evaluation
 - Focused effort to develop and update predictive model capability