

Phenotype-guided Obesity Management Enhances Weight Loss

Andres Acosta M.D., Ph.D., ABOM dipl.

Assistant Professor of Medicine
Precision Medicine for Obesity Program
Division of Gastroenterology and Hepatology,
Center for Individualized Medicine
Mayo Clinic, Rochester, MN

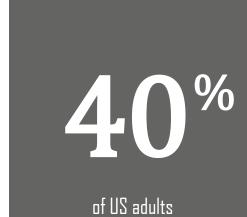
Funding
NIDDK P&F C-Sig P30DK084567
Gerstner Career Development Award – CIM
NIDDK K23-DK114460

Disclosures

Stocks, Founder

- Gila Therapeutics
- Phenomix Sciences

Consultant


- General Mills
- Rhythm Pharmaceuticals

Research Funding

- National Institute of Health
- Vivus Pharmaceuticals
- Novo-Nordisk
- Apollo Endosurgery
- Satiogen Pharmaceuticals
- Spatz Medical
- Rhythm Pharmaceuticals

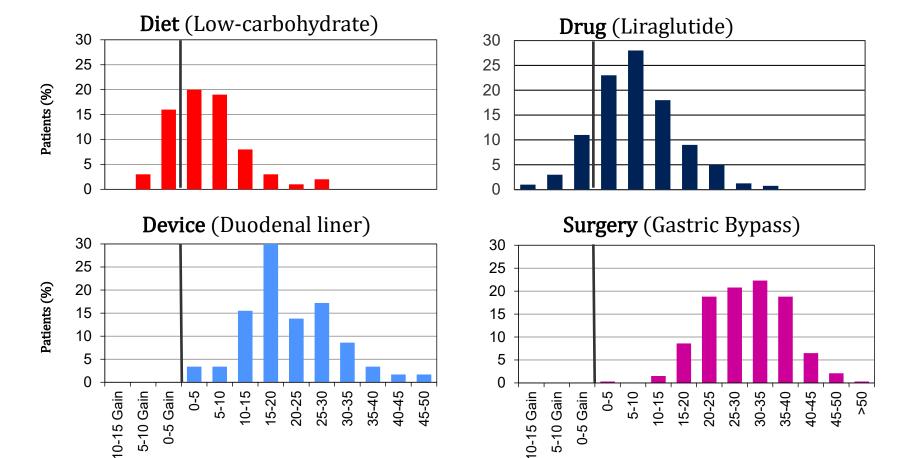
OBESITY- The #1 Chronic Disease

are affected by obesity

premature death

Milken Institute: America's Obesity Crisis. 2018.

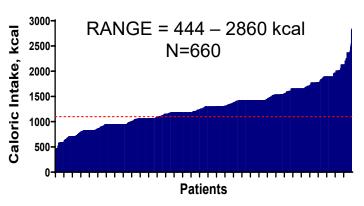
Existing obesity treatments are mostly


Challenges of Treating Obesity: Variable Response

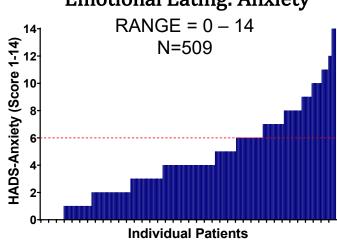
One-size-fits-all is not working!

Obesity heterogeneity: One-treatment-fits-all does not work

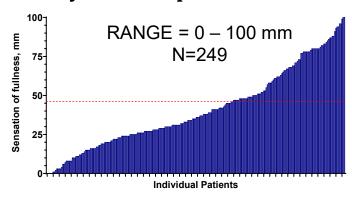
Weight loss varies widely among patients

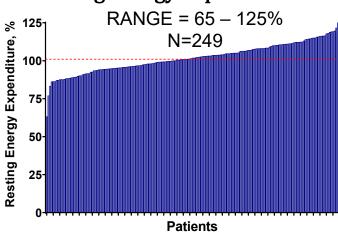

Total Body Weight Change (%)

Total Body Weight Change (%)



Energy Balance Heterogeneity: Variability among traits


Satiation Test: Maximal Fullness


Emotional Eating: Anxiety

Satiety Test: Postprandial Fullness

Resting Energy Expenditure

Mean Value for Normal weight controls (n=138)

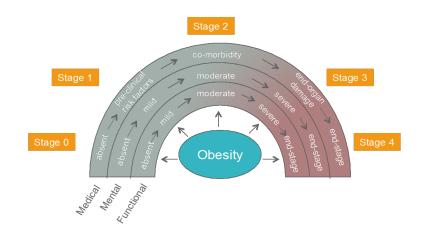
Challenges of Treating Obesity: Current Classifications

- "One-treatment-fits-all" strategy is not working
- Current obesity classification focus on obesity-cardiovascular or comorbidities risk ("severity") not on a real obesity stratification (segmentation).

Body Mass Index ± WC

		Disease Risk Relative to Normal Weight and Waist Circumference		
	BMI, kg/m ²	Men ≤102 cm, Women ≤88 cm	Men >102 cm, Women >88 cm	
Underweight	<18.5	***	***	
Normal	18.5–24.9	***		
Overweight	25.0-29.9	Increased	High	
Obesity	30.0–34.9	High	Very high	
	35.0–39.9	Very high	Very high	
Extreme obesity	≥40	Extremely high	Extremely high	

Lewis, Cora E., et al. Circulation 119.25. 2009


MHO

Subcutaneous fat > visceral fat
Slightly increased muscle mass compared to individuals who are nonobese and metabolically healthy
Normal insulin sensitivity
Normal glycemia
Normal plasma lipid profile
Normal blood pressure
Low-to-mild cardiovascular risk

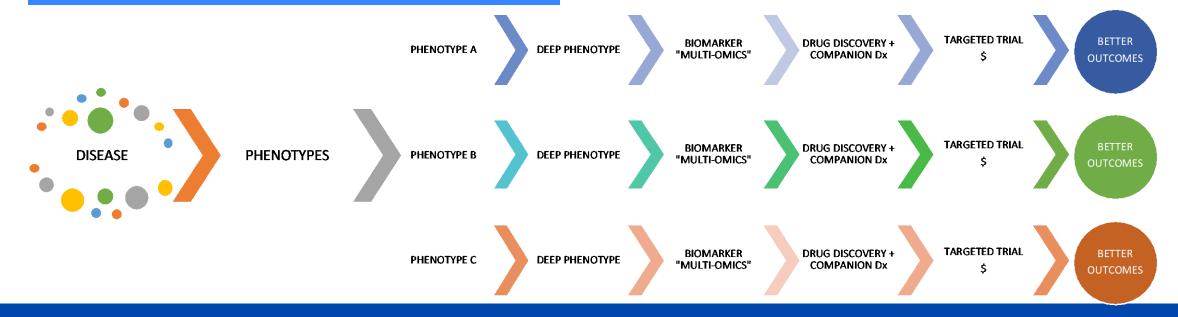
MUO

Visceral fat > subcutaneous fat
Decreased muscle mass compared to individuals who are nonobese and metabolically healthy
Insulin resistance
Prediabetes/type 2 diabetes
Atherogenic dyslipidemia
Increased blood pressure
Moderate -to-high cardiovascular risk

Obesity Stages Comorbidities

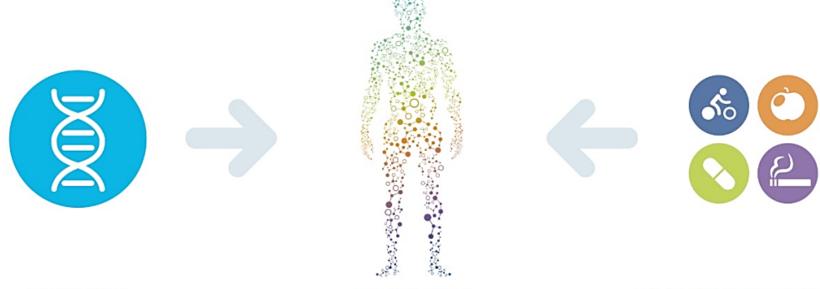
Lonardo, Amedeo, et al. 2020

Sharma AM et al. Int J Obes. 2009



Precision Medicine for Obesity

TRADITIONAL APPROACH



PRECISION MEDICINE APPROACH

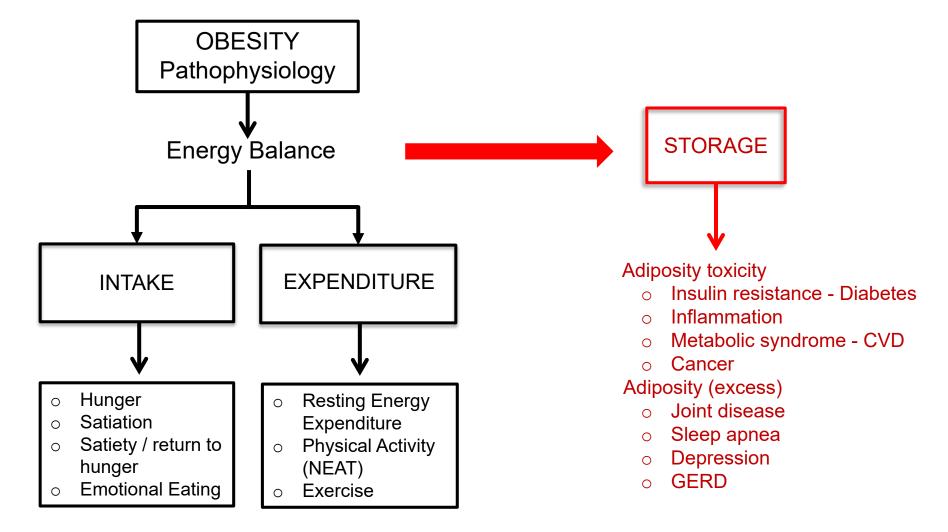
Phenotype: Interaction of our genes with our environment

GENOMICS

Our genes can suggest what diseases we *might* be predisposed to, but it's an incomplete picture of human health.

PHENOTYPE

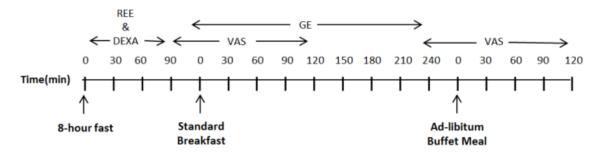
A snapshot of the current state of health that can be used to prevent, diagnose and treat disease or improve health.


LIFESTYLE/ENVIRONMENT

External factors like diet, exercise, medications, microbiota and even where we live influence our metabolic state.

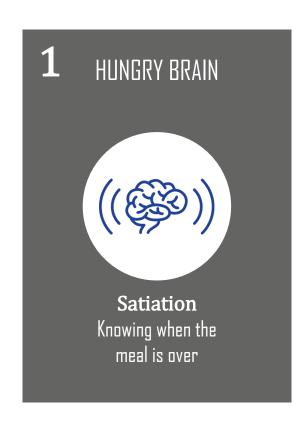
Adapted from Metabolon Report

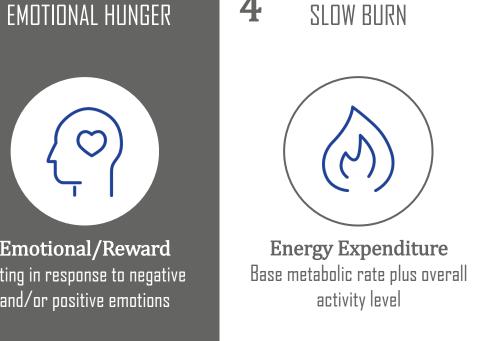
Obesity Phenotypes Based on their Pathophysiology



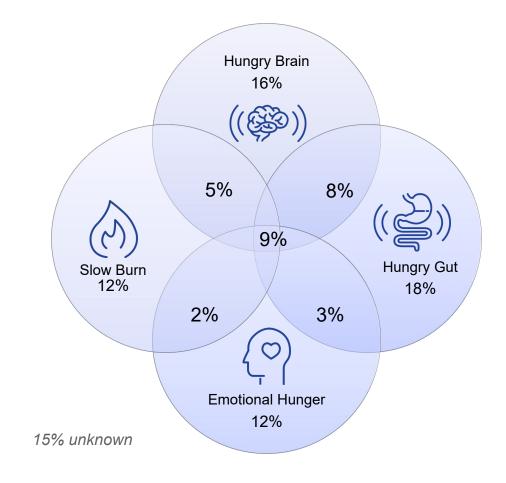
How we phenotype our patients?

<u>Obesity</u>	<u>Phenotype</u>	<u>Test</u>
<u>Categories</u>		
Food Intake –	Hunger	VAS – Hunger 240 min,
Homeostatic		0-100 mm
	Satiation	Ad Libitum Buffett meal, Kcal
		VAS – Satisfaction 30 min
		postprandial, 0-100 mm
	Satiety / Return	VAS – Fullness 120 min
	to hunger	postprandial, 0-100 mm
		Gastric Emptying T ½, min
Food Intake –	Emotional	TEFQ – Emotional restraint (4-
Hedonic Eating	Eating	16 Scale)
		HADS-A (0-21 scale)
Energy	Basal Metabolic	Predicted REE (HB) %
Expenditure	rate	Calf Danamad Ctana #
	Non-Exercise	Self-Reported Steps, #
	Physical Activity	0.15
	Exercise	Self-Reported Exercise (PASC),
		0-8 scale


Typical Phenotyping Day:


Four Obesity Phenotypes

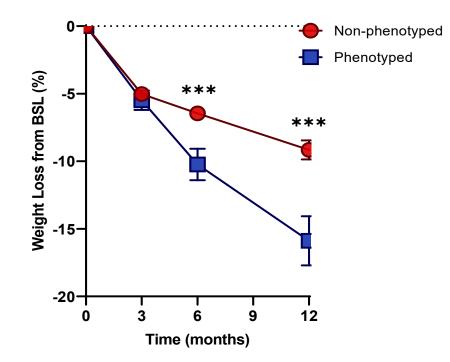
Machine-learning identified key phenotypes in 509-patient study at Mayo Clinic



RESULTS: Obesity Phenotypes in 450 patients

Phenotypes were identified based on the 75th percentile from the median value in the population with obesity

N = 450 participants, Obesity (defined as BMI >30 kg/m2) with the following demographics [mean \pm SEM)]: age 39 \pm 0.5 years old, BMI 37 \pm 0.3 kg/m2, 72% females, 93% white, waist circumference 105 \pm 0.1 cm, fasting glucose 103 \pm 1.4 mg/dI



Proof of Concept Trials:

- Obesity-related Phenotypes predict response to obesity pharmacotherapy and endoscopic devices.
- Proof of Concept in a single-center, randomized, parallel-group, double-blind, placebo-controlled trial with:
 - Phentermine-topiramate-ER (7.5/46mg)¹
 - Exenatide 5ug²
 - Liraglutide 3 mg³
 - Orbera Intragastric Balloon⁴
 - Endoscopic Sleeve Gastroplasty⁵
 - Aspire Assist Device⁶
 - Spatz Intragastric Balloon⁷
- Real-World Experience
 - Intragastric Balloon⁸
 - Phenotype-guided Pharmacotherapy⁹

Phenotype-guided Pharmacotherapy⁹

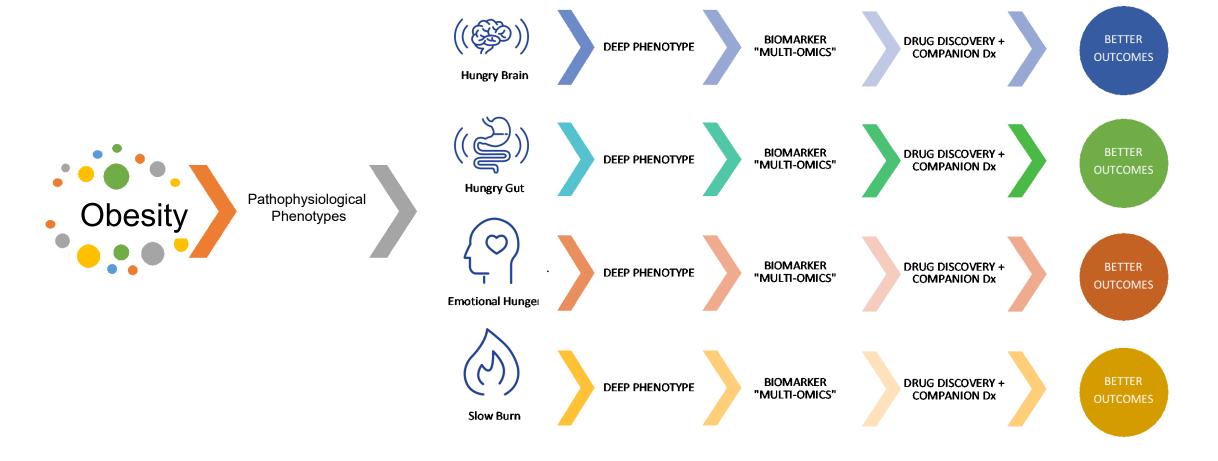
¹ Acosta A , Camilleri, et al., Gastroenterology. 2015

² Acosta A, et al., Physiology Reports, 2015

³ Halawi H, Camilleri, et al., Lancet Gl. 2017

⁴ Gomez V, et al., Obesity. 2016

⁵ Abu Dayyeh BK, et al., Clin Gastroenterol Hepatol. 2017


⁶ Vargas EJ, et al., BMJ Open Gastroenterol. 2019

⁷ Vargas EJ, et al., Clin Gastroenterol Hepatol. 2020

⁸ Lopez Nava et al., Obesity Surgery 2020

⁹ Acosta A., et al., Obesity 2021

Personalized Approaches to Obesity

Key Take Away

- "One-treatment-fits-all" is not working...
- Obesity is a complex disease with many different phenotypes
- Phenotype-guided intervention doubles (2x) weight loss
- Obesity phenotypes can be measured with a simple blood test

Thank you for your attention! Questions and Comments?

@dr_aac acosta.andres@mayo.edu

